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Abstract  

This thesis investigates the application of Deep Neural Networks (DNN), Convolutional Neural 

Networks (CNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BLSTM) algorithms 

for Spoken Language Identification (SLI) in the context of Ethiopian languages. With Ethiopia's 

rich linguistic diversity presenting a unique challenge, this research endeavors to develop robust 

models capable of accurately identifying spoken utterances across a spectrum of Ethiopian 

languages. The study involves the collection and preprocessing of a comprehensive dataset 

encompassing diverse linguistic variations and dialectal nuances prevalent within Ethiopian 

speech. Through rigorous experimentation and evaluation, the efficacy of DNNs, CNNs, LSTMs, 

and BLSTMs in classifying spoken language samples is assessed, considering factors such as model 

accuracy, computational efficiency, and generalization capability. Furthermore, particularly in 

scenarios with limited labeled data. The outcomes of this research not only contribute to the 

advancement of SLI technologies but also hold significant implications for communication systems, 

language preservation efforts, and cultural heritage preservation in Ethiopia and beyond. Our 

experiment results indicate that the BLSTM algorithm, utilizing MFCC features, performed best for 

the Ethiopian language identification dataset. Specifically, it achieved an accuracy of 87.5% for 30 

seconds, 95% for 10 seconds, and the highest accuracy of 95% for 3 seconds, particularly for 

Amharic, Tigrigna, and Wolaytigna languages, surpassing other algorithms tested. And DNN 

model followed achieved the maximum accuracy with a value of 92.5% at a speech duration of 10 

s, for all languages. We utilized Librosa library in Python on a CPU with (Hp pro 1 tera) and 8 GB 

of RAM to tests all experiments. 

Keywords: Spoken Language Identification, Ethiopian Languages, Deep Learning, DNN, CNN, 

LSTM and BLSTM, Language Diversity, Speech Recognition.        
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CHAPTER ONE 

1. Introduction 

1.1. Background  

Language serves as a tool for human communication, whether through spoken words or written 

text. When people speak, their primary goal is to convey messages. However, speech not only 

carries the intended message but also reflects aspects such as the speaker's characteristics and the 

language being used. The language itself is communicated through a series of sound units[1]. In 

spoken communication, the information conveyed through language can be subtle and implicit, 

heavily influenced by the content of what is being said[2].Humans recognize languages with a little 

training and effort. Automating this ability is the hot issue in the field of computer science and 

engineering [3],[4]; and the field of studying language identification is called Natural Language 

Processing (NLP). 

Natural language processing (NLP) is a discipline grounded in theoretical principles that utilizes 

computational methods to automate the analysis and representation of human language. NLP 

enables computers to perform diverse tasks involving natural language at different levels, including 

parsing, part-of-speech (POS) tagging, machine translation, and dialogue systems [5]. The 

methodologies employed in NLP implementation have progressed from modeling techniques such 

as vector quantization (VQ) [6] and Gaussian mixture modeling (GMM). 

Currently, advanced techniques such as Deep Neural Networks (DNNs), Convolutional Neural 

Networks (CNNs), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM) have 

demonstrated significant effectiveness in language identification tasks. 

Recent advancements in deep learning architectures and methodologies have significantly advanced 

fields such as computer vision and pattern recognition [2]. Unlike traditional approaches in natural 

language processing (NLP), such as support vector machines (SVM) and logistic regression, which 

often employ shallow models trained on high-dimensional and sparse features, deep learning allows 

for the automatic extraction of intricate hierarchical features. This capability has made deep 

learning particularly effective in systems focused on speech and speaker recognition, and more 

recently, in language identification and recognition systems [7,8,5,2]. 
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Language identification (LID) finds extensive applications across various multilingual services, 

such as directing incoming calls to operators fluent in the caller's language. Humans are currently 

the most accurate entities in identifying languages, often able to do so within seconds of hearing 

speech, even if it's unfamiliar, by making subjective comparisons like "sounds like French" [1]. 

However, automating LID offers numerous advantages including cost reduction and quicker 

training periods [1,4]. Unlike tasks such as speech recognition or speaker identification where 

speaker identity or utterance content is known, LID faces the challenge of identifying both the 

language and speaker from speech data, which varies due to different speakers, channels, and 

background noise [9]. Effectively capturing language information from short, content-limited 

utterances requires finding robust representations of language [9]. 

There are approximately 6,900 known languages spoken worldwide [1]. Therefore, an effective 

language identification (LID) system should swiftly and accurately leverage various aspects of 

speech information to distinguish among a vast number of languages. Additionally, it should be 

adaptable to accommodate the variability introduced by different speakers. 

An automatic language identification (LID) system is crucial for ensuring effective communication 

between users and the system. It quickly determines the likely languages spoken in incoming 

speech, significantly reducing the time needed to find an interpreter [10]. Our research focuses on 

developing a spoken LID system based on deep learning specifically for four Ethiopian languages: 

Amharic, Oromigna, Tigrigna, and Wolaytigna. 

Ethiopia is home to approximately 200 dialects categorized into Semitic, Cushitic, Omotic, and 

Nilo-Saharan language groups, with about 86 distinct languages [11]. The Semitic family includes 

Amharic and Tigrigna, Cushitic includes Oromigna, and Omotic includes Wolaytigna. These 

languages were selected due to their significant number of native speakers and diverse usage across 

various regions in Ethiopia. 

Amharic serves as the primary language in administrative functions within the Amhara regional 

state and the Federal Government. Tigrigna is the official language of the Tigray regional state and 

Eritrea. Oromigna is spoken by approximately 37 million people in the Oromia regional state. 

Wolaytigna is the official language for around 6 million people in the southern part of Ethiopia 

[11]. 
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In our research, we applied an innovative deep learning method for Ethiopian Language 

Identification (LID), utilizing algorithms including Deep Neural Networks (DNN), Convolutional 

Neural Networks (CNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BLSTM). 

LSTM, known for its effectiveness in handling sequential data such as audio recordings [12], 

played a crucial role. By integrating these advanced algorithms, our goal was to achieve high 

accuracy by harnessing the output data from preceding layers. 

We utilized Mel-frequency cepstral coefficients (MFCC) for feature extraction, which are effective 

in capturing relevant information from audio signals, thus enabling reliable identification of the 

targeted Ethiopian languages. Various front-end and back-end techniques have been explored in 

existing LID systems, demonstrating the versatility and adaptability required to handle different 

types of speech data [7, 8, 13]. 

 

figure 1. 1 Levels of Language Identification System 

 

As Figure 1.1 depicts, the LID system has two major architectural levels; front-end level (i.e., 

feature extraction) and back-end level (i.e., classification and prediction). In the back-end level 

multiple classification techniques have been employed and one of them is Deep Neural Networks 

(DNN), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and 

Bidirectional LSTM (BiLSTM) is best language identification algorithms. 

1.2. Statement of the Problem 

Acoustic features encompass the physiological aspects of a speaker, such as vocal tract 

characteristics, which aid in distinguishing between languages [9].They are also the easiest to be 

captured from a speech; but they might not be as efficient as the combination of all the 

features that are acoustic with phonetic and prosodic features. In spite of its being easy and 

telling small amount of information about a language, what will happen if we use better training 

technique made us to be eager. Present telephone-based information services utilize interactive 
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voice response (IVR) systems. IVR is an automated system that engages with callers, gathers 

information, and directs calls to the appropriate recipient. Creating a Language Identification (LID) 

system would enable rapid processing of spoken customer data, identifying the language used, and 

swiftly connecting calls to an operator fluent in that language. 

The second thing is that Ethiopia is a multilingual country with over 80 existing languages [1]. But 

as per our knowledge in doing this research, there are insufficient studies made to automate 

identifying languages. In our baseline paper[1] of this study we figured out that it is possible to 

study the effect of using different algorithms and techniques based on a given countries context. 

This is very important in a means that; if someone who wants to implement LID on Ethiopian 

languages they might find our study useful. But it doesn't mean that there was no research at all. 

From Addis Ababa University (AAU) [1], we have found out one research which was studied by 

utilizing the modeling technique of GMM. Therefore, if it has been done based on the earlier 

technique than the-state-of-the-art, then we could also study LID based on the more recent and 

currently shining deep learning classification technique. To make it more sensible, we use DNN, 

CNN, LSTM and BLSTM algorithm as our baseline framework and we can compare the accuracy 

of the proposed LID system based on each other’s. The  number  of  languages  it  considered  was  

also  only  four  that  is,  Amharic,  wolayitegna, Oromigna and Tigrigna . 

In various studies, such as those focusing on speech recognition and speaker verification, DNNs 

have demonstrated superior performance compared to previous dominant techniques like CNN, 

LSTM, and BLSTM. This advancement has been noted in a wide range of demanding machine 

learning applications, such as acoustic modeling and visual object recognition. 

The proposed system addresses some of the limitations encountered in DNN, CNN, LSTM, and 

BLSTM algorithms when applied to language identification (LID), particularly concerning the 

number of languages to be trained and tested. Moreover, the system effectively leverages different 

aspects of speech information to accurately and rapidly discriminate between various languages, 

even within a vast array of target languages. Additionally, it exhibits flexibility in accommodating 

variations among different speakers. 

1.3. Research questions 

  The primary goal of this study is to design and compare the performance of DNN, CNN, LSTM, 
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and BiLSTM algorithms in identifying spoken Amharigna, Oromigna, Tigrigna, and wolayitegna 

languages. The specific research questions are as follows: 

1. How to prepare testing and training dataset? 

2.  Which feature selection algorithm is employed? 

3. How accurate and appropriate are the DNN, CNN, LSTM, and BiLSTM algorithms in   

identifying spoken Amharigna, Oromigna, Tigrigna, and wolayitegna languages? 

4.  What are the factors that influence the performance of these algorithms in language 

identification? 

1.4. Objective 

1.4.1 General Objective 

The primary aim of this research is to create an effective Spoken Language Identification system 

for Ethiopian languages using Deep Neural Network (DNN), Convolutional Neural Network 

(CNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM) algorithms. 

1.4.2 Specific Objectives 

 To gather a substantial dataset of spoken utterances in the four Ethiopian languages for 

training and evaluating the identification models. 

  To design and implement the best DNN, CNN, LSTM and BLSTM model for spoken 

language identification to classifying the audio samples. 

  To choose the most suitable feature selection algorithm for language audio signals. 

 To assess and compare the performance of the developed models using relevant evaluation 

metrics like accuracy, precision, recall, and F1-score, to identify the most effective 

algorithm for spoken language identification in the Ethiopian context. 

1.5. Motivation 

    The motivation of this thesis work is that since Ethiopia is a multi-lingual country; this can be 

considered as a blessing for those who know its value; because it creates a colorful culture. But it is 



6 
 

also a concern around security agencies, emergency services and telephone companies to give 

service for their customers in their own language. If we consider it, this could be an opportunity for 

a researcher to solve by studying and implementing automated systems. Language Identification 

system is a widely used system and researches are flooding from all over the world. But, the 

researches around this field in Ethiopia are not going as it supposed to be; also it is usually done on 

earlier algorithms. So this thesis work will be timely in regard to applying the most recent 

algorithm. This research work also will be supportive for anybody who is interested in this research 

area in Ethiopian context. My motivation came from a research titled LID based on GMM from 

AAU in 2017 G.C [1]; so I become interested to work on this area and contribute my part. 

1.6. The Scope of the Study 

   This study will focus on implementing SLID system with the state-of-the-art and most efficient 

pattern classification technique using DNN, CNN, LSTM and BLSTM for four selected Ethiopian 

languages. In the SLID system given that every language that is found in the whole world has its 

own unique identifying characteristics; it is required to study the uniqueness of the specific 

language. It is also important to make sure we are using the best algorithm by considering and 

comparing the accuracy of the result. We have implemented the more accurate DNN, CNN, LSTM 

and BLSTM algorithms are evaluated the best results by comparing to each other’s. 

In every country there are researches in progress to include their languages to the LID system 

[3],[16],[17]; in Ethiopia there was a research that is based on GMM algorithm at AAU in 2017 

G.C so this study can be considered as the proceeding of [1]. 

Due to the vast number of languages spoken in Ethiopia, this study focuses specifically on four 

languages: Amharic, Oromo, Tigrinya, and Wolaytta. These languages were selected based on their 

speaker population and prevalence in the country. Also the length of data samples taken is in 3, 10 

and 30 seconds to make the learning and testing process measureable. Samples taken for each 

language at the training level is 50 frames; total numbers of training samples are 4*50=200 frames. 

Total number of 8,600 sec languages for all training parts. In the testing process we used total 

number of data samples 20, which are 5 frames for each language 4*5=20 frames. Total number of 

860 sec recorded languages for all training parts 
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1.7. Limitation of the Study 

   The proposed system's focus is on extracting the acoustic features of the sample data of each 

selected language at the front-end level using the most efficient feature extraction algorithm MFCC 

[30], for training the DNN, CNN, LSTM and BLSTM [11], [10],[1] system with the given dataset 

and predicting the languages based on the trained model and unknown utterance features of the 

testing dataset. The DNN, CNN, LSTM and BLSTM based LID will be trained on four different 

selected Ethiopian languages (i.e., Amharic, Oromigna, Tigrigna and Wolaytigna) in the training 

phase and the corresponding languages are predicted in the testing phase. 

Additionally due to the lack of time and resource constraints we did not include all the 

utterances/speeches of the respected language; instead we have used 3, 10 and 30 second speech 

from each language. Since learning systems have high resource consumption, we didn't consider 

the CPU usage and time issues as parameters at this thesis work. 

1.8. Significance of the Study 

Language Identification (LID) is utilized in numerous multilingual services, such as routing 

incoming telephone calls to human switchboard operators fluent in the caller's language. 

Automating LID offers several advantages, including cost savings and shorter learning periods 

compared to human language identification systems [3]. 

Therefore, this project is important in the identification system applications for Ethiopian languages 

and will be stepping stone for future researches. 

1.9. Organization of the Thesis 

After this introduction chapter we will proceed to the second chapter which is the literature survey 

with introduction, literature reviews and Conclusion of literature reviews. Chapter three, focusing on 

methodologies, provides a comprehensive description of the proposed system architecture and 

algorithms. It begins by explaining the preparation of raw speech data and datasets. Following an 

overview of the system's overall pipeline, the chapter delves into the specifics of each step within 

the system model. It concludes by examining the preprocessing of speech data, feature extraction, 

and classification methods. 
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Chapter four begins with an overview of the tools utilized in the experiment. It then progresses 

through presenting experimental results and comparing the accuracy of various LID systems based 

on CNN, DNN, LSTM, and BLSTM architectures as researched in this work. 

The final chapter is conclusion and future work followed by references used in the thesis work. 

And the last chapter is conclusion, recommendation, future work and reference of this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

CHAPTE TWO 

2. Literature review  

2.1 Introduction 

Spoken Language Identification (SLID) is the process of automatically recognizing the language 

spoken in an audio recording. It plays a crucial role in applications like speech recognition, speaker 

verification, and language translation. Research in LID systems did not emerge until the 1970[2], 

and progress was initially slow for nearly two decades. However, advancements gained momentum 

with the availability of openly accessible multilingual speech corpora[2]. 

LID systems have since evolved, primarily differing in their approaches to modeling languages. 

Recently, deep learning algorithms have shown substantial progress and promising outcomes in 

Spoken Language Identification (SLID). 

2.2 Literature reviews 

    A Deep Neural Network (DNN), also referred to as a deep feedforward neural network or 

multilayer perceptron (MLP), is a type of deep learning model specifically created to approximate 

complex functions. In the context of classification tasks, such as image classification where 

f(x;θ)=yf(x; \theta) = yf(x;θ)=y, a feedforward neural network maps an input xxx to an output 

category yyy. This mapping is defined by a set of parameters θ\thetaθ, which the network learns 

through training to achieve the optimal approximation of the function [14]. 

Deep learning involves training systems to emulate the learning capabilities of the human brain. It 

employs multiple layers of nonlinear processing units to extract and transform features from data. 

The term "deep" signifies the depth of these layers in the network architecture[14]. 

Different deep learning architectures, such as deep neural networks, deep belief networks, and 

recurrent neural networks, have shown success in various domains like computer vision, speech 

recognition, and natural language processing. They frequently achieve results that are comparable 

to or even surpass human performance in specific tasks.  



10 
 

Deep neural networks are characterized by their feedforward structure, which includes multiple 

hidden layers. These layers empower the network to learn complex transformations from input to 

output, handling both linear and nonlinear relationships effectively. As data passes through these 

layers, the network computes probabilities associated with each output class or category. 

For example, a DNN trained to classify dog breeds from images would analyze each input image 

and calculate probabilities for different dog breeds. Users can then interpret these probabilities, 

potentially filtering out results below a certain threshold to determine the most likely breed. 

In speech recognition tasks, DNNs have been effective as acoustic models or for extracting 

bottleneck features from audio data, contributing to significant performance improvements[2]. 

DNNs excel at modeling complex nonlinear relationships and leverage the composition of layered 

representations to effectively handle data complexity. During training, weights between neurons are 

adjusted iteratively based on the network's performance, enhancing the network's ability to 

recognize patterns and make accurate predictions[2]. 

In summary, deep neural networks are pivotal in modern machine learning, enabling efficient 

processing of complex data and consistently achieving state-of-the-art results across diverse 

domains. 

 Convolutional Neural Networks (CNN) has demonstrated high effectiveness in various speech 

and audio processing tasks, making them an ideal choice for SLI[12]. CNNs are deep learning 

models that can automatically extract meaningful features from audio signals, capturing both 

phonetic and acoustic characteristics. The approach for SLI using CNN starts with preprocessing 

and feature extraction from the audio recordings [12]. This may involve converting the audio to a 

spectrogram or other suitable representation that CNN can process effectively. The extracted 

features are subsequently input into the CNN model, which is trained using a extensive dataset of 

labeled audio recordings from the four languages. 

The CNN model undergoes an extensive training process, optimizing its parameters to accurately 

identify the spoken language. The model learns to differentiate the unique phonetic and acoustic 

patterns present in each language, enabling it to recognize the target language accurately. 

By accurately identifying the spoken language in audio recordings of Amharic, Oromo, Tigrigna, 
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and Wolayitegna, the SLI system using CNN can contribute to various applications that require 

language-specific processing [11]. It can facilitate more effective communication services, 

language-based information retrieval, and enable better access to technology for the people of 

Ethiopia. 

    Long Short-Term Memory (LSTM) Language identification, also known as language 

detection, is the process of automatically identifying the language of a given text or speech signal. 

In this case, the task is to identify spoken languages from four Ethiopian languages using the Long 

Short-Term Memory (LSTM) algorithm. 

LSTM is a variant of recurrent neural network (RNN) known for its ability to capture long-term 

dependencies in sequential data [11], making it well-suited for tasks like natural language 

processing (NLP) and speech recognition. It has been extensively applied in diverse language-

related applications, including language identification. 

To develop language identification using the LSTM algorithm, you would need a dataset consisting 

of spoken recordings in each of the four Ethiopian languages. This dataset would need to be 

properly labeled with the corresponding language for each recording [1,11]. 

    Bidirectional long short-term memory (BLSTM) belongs to the category of bidirectional 

recurrent neural networks (BRNN). Initially introduced in [11], It consists of two hidden layers that 

provide distinct directions to the same output. This setup allows the output layer to integrate 

information from both preceding (backward) and subsequent (forward) states simultaneously. Each 

LSTM is composed of interconnected and progressively intricate subnetworks known as "memory 

cells" or gates. These components enable the model to effectively capture long-range dependencies 

in the flow of information. 

 Consequently, as data progresses through the layers, fresh values are added to the activation, 

mitigating the vanishing gradient problem often encountered in LSTM networks and making them 

comparable to residual neural networks [11].The combination of these algorithms ensures 

comprehensive coverage across different aspects of audio data, enabling robust language 

identification even when dealing with the subtle differences between the targets Ethiopian 

languages. Improved SLI on these languages can have transformative benefits for various 

applications, such as transcription services, language translation, and speech recognition 

technology, ultimately facilitating effective communication and language understanding in 
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Ethiopia. It is possible to develop highly accurate SLI systems. 

2.3 Related works 

Mikias Wondimu and Tekeba[1]: In a language identification system designed for four Ethiopian 

languages Amharigna, Oromifa, Gurgegna, and Tigregna a Gaussian mixture model was employed. 

The system utilized the (MFCC) for feature extraction and GMM for classification. Notably, the 

study did not enforce a fixed duration or segment size for audio segmentation. 

Across the four languages, the average accuracy in the utterance-dependent Language Identification 

(LID) test was 93%. In the utterance-independent test, the average accuracy was approximately 

70%. In the speaker-independent test, evaluated under the utterance-dependent scenario, the system 

achieved an average accuracy of around 91%. 

     Alemu, A.A., Melese, M.D. & Salau, A.O.[11]: This paper presents an Ethio-semitic language 

identification system using audio, leveraging Recurrent Neural Network (RNN) technology. Given 

the high similarity among characters within each language, identifying distinct features that can 

accurately differentiate between languages is a significant challenge. To tackle this issue, the 

system integrates Recurrent Neural Network (RNN) with Mel-frequency cepstral coefficients 

(MFCCs) for feature extraction, achieving promising results. 

The study aims to identify the best model for Ethio-semitic language identification, focusing on 

languages such as Amharigna, Geez, Guragegna, and Tigregna. An 8-hour collection of audio 

recordings is used for testing the models. Experiments are conducted using a single dataset, 

employing an extended version of RNN, including Long Short Term Memory and Bidirectional 

Long Short Term Memory for 5 and 10 sec durations, respectively. 

The results indicate that the Bidirectional Long Short Term Memory (BLSTM) model outperforms 

the Long Short Term Memory (LSTM) model. Specifically, the BLSTM model achieves average 

training, validation, and testing accuracies of 98.1%, 92.9%, and 89.9%, respectively. 

      Panji Wijonarko, Amalia Zahra [12]. This paper investigates the use of spoken language 

identification technology to improve tourism and digital content in Indonesia, with a specific focus 

on four local languages: Javanesse, Sundanesse, Minangkabau, and Buginesse. The study employs 

deep learning classification techniques such as artificial neural network (ANN), convolutional 
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neural network (CNN), and long short-term memory (LSTM). Feature extraction utilizes Mel-

frequency cepstral coefficients (MFCC) for analyzing audio data. 

Datasets for each local language are sourced from the internet, specifically from openslr.org for 

Javanese and Sundanesse, and from YouTube.com for Minangkabau and Buginesse. Each dataset 

comprises a total duration of 200 minutes. 

Experimental results indicate that for a speech duration of 30 seconds, the LSTM (4) and CNN (2) 

models achieves the highest accuracy at 88.1%, followed closely by the ANN (4) model with 

87.5%. For shorter durations of 10 seconds, the LSTM (4) model succeeds the highest accuracy of 

88.8%, followed by CNN (4) at 87.1%, CNN (2) at 85.6%, and ANN (2) at 85.4%. Similarly, for a 

duration of 3 seconds, the LSTM (4) model shows the highest accuracy at 87.2%, followed by 

CNN (4) at 86.1% and CNN (2) at 85.5%. 

Throughout the study, across all speech durations (3s, 10s, and 30s), the LSTM model consistently 

performs the best in terms of accuracy, followed by the CNN model in second place and the ANN 

model in third place. 

     Chithra Madhu, Anu George and Leena Mary.[13]. Languages vary in their phonological units, 

their frequency, and the order in which these units appear in words. Detecting and leveraging these 

differences among languages is crucial for automatic language identification (LID). This paper 

focuses on exploring phonotactic and prosodic features extracted from speech signals to address 

various aspects of language identification. 

Unlike traditional approaches that require constructing language models based on phonotactic 

patterns, this work eliminates that need. Instead, it uses syllables as the basic units for feature 

representation. Syllables, comprising multiple phonemes, can capture significant language-specific 

co-articulation effects. The segmentation of speech into syllable-like units is achieved using valley 

points detected in the short-time energy contour. 

Phonotactic and prosodic features are extracted using syllable boundaries. Prosodic feature vectors 

are created by combining features from three consecutive syllables. 
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At the backend, a multilayer feedforward neural network classifier is employed for language 

identification. This NN classifier utilizes the extracted phonotactic and prosodic features to 

distinguish between different languages. 

In summary, this approach leverages syllables for feature representation, extracts phonotactic and 

prosodic features from these syllables, and employs a neural network classifier for effective 

language identification without the need for constructing conventional language models based on 

phonotactic patterns. 

     Pinki Roy and Pradip K. Das [18]: The research demonstrates the effectiveness of a language 

identification (LID) system designed for speech, focusing on four distinct Indian languages: Indian 

English, Hindi, Assamese, and Bengali. The evaluation of these languages utilizes established 

recorded databases, with feature extraction carried out using Mel frequency cepstral coefficients 

(MFCC), and classification performed using Gaussian mixture models (GMMs). Experiments are 

conducted using a proprietary standardized language database compiled from recordings by 50 

speakers. The results show that the highest accuracy in LID across all languages is achieved with a 

mixture order of 1024. The accuracy of LID ranges from a minimum of 93% for Assamese to a 

maximum of 100% for Bengali, Hindi, and Indian English. 

     David Martinez, Lukas Burget:[19] A language recognition system has been created to 

automatically extract prosodic information from speech and employ a generative classifier based on 

iVectors. The system's performance was evaluated using the NIST LRE09 dataset. 

By incorporating a prosodic system with 2048 Gaussians and 400-dimensional iVectors, along with 

a fusion approach integrating both systems, notable performance improvements were achieved 

across all testing conditions. 

Relative to the acoustic system, the enhancements in accuracy were substantial: 10.93% 

improvement for 3-second segments, 15.24% improvement for 10-second segments, and 9.39% 

improvement for 30-second segments. These results demonstrate the efficacy of integrating 

prosodic information and utilizing iVectors for enhancing the accuracy of language recognition 

systems. 
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     v. Ramasubramanian A. K. V. Sai Jayram T. V. Sreenivas [20]: The study explores innovative 

challenges in the parallel phone recognition (PPR) system for automatic language identification 

(LID). It assesses three critical score types in LID: acoustic score, language model score, and joint 

acoustic-language score. Each score type is utilized to develop classifiers using three distinct 

methods: maximum likelihood classifier (MLC), Gaussian classifier (GC), and K-nearest-neighbor 

classifier (KNNC). The study rigorously compares the performance of these classifiers across 

various combinations of scoring methods. 

The findings highlight that MLC, particularly when applied with bias-removal techniques, achieves 

the highest performance when utilizing either the acoustic score or the language model score 

independently. Additionally, GC utilizing the joint acoustic-language score closely follows in 

performance. These results underscore the effectiveness of specific classifier-score combinations in 

enhancing the accuracy of LID systems, addressing critical aspects in PPR system development 

previously unexplored. 

         Kinnunen, Tomi et al. (2017)[21]: The study proposed a BiLSTM approach for spoken 

language identification using frame-level acoustic features. They compared the performance of 

BiLSTM with other traditional machine learning algorithms and found that BiLSTM achieved 

superior accuracy. The researchers also experimented with an ensemble of BiLSTM models and 

reported further improvement in identification accuracy. 

        Zhang, Xinglei et al. (2019)[22]: In this research, LSTM-based DNN architecture was used for 

spoken language identification. The LSTM layers were employed to model both frame-level and 

sequence-level features. The study demonstrated that using LSTM layers in the DNN model 

significantly improved the identification accuracy, outperforming traditional DNN models that 

neglected the temporal dependencies. 

       Gundeep Singh, Sahil Sharma, Vijay Kumar, Manjit Kaur, Mohammed Baz, Mehedi 

Masud[23],In this paper, we introduced a deep learning-based framework for spoken language 

identification. This framework involves converting audio utterances into spectrograms, which 

represent the frequency and time components of the speech signal. Next, a convolutional neural 

network (CNN) processes these spectrogram images to extract pertinent features for classification. 

The softmax activation function is then employed for multi-language classification. The dataset 

consists of recordings from 90 distinct speakers, encompassing both male and female voices. 
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We conducted experiments using four different datasets, each containing audio samples. The first 

dataset includes recordings in three languages, the second dataset comprises samples from 22 

languages, and the third dataset contains recordings in 16 languages. All datasets are available on 

Kaggle, while the fourth dataset, which contains samples from four languages, can be accessed on 

the Mozilla website. 

In the image domain, 2D convolutional neural networks achieved an impressive accuracy of 98%. 

Furthermore, utilizing word embeddings with a retrained model on a CSV dataset resulted in an 

accuracy of 95%. Employing the Bernoulli Naïve Bayes approach yielded an accuracy of 93% on 

the 22-language dataset. Finally, SVM and random forest classifier models achieved accuracies of 

82.88% and 72.42%, respectively, on the 16-language dataset. 

      Shukla, Harsh et al. (2020) [24]: The study explored the effectiveness of BiLSTM networks in 

combination with spectrogram features for spoken language identification. The researchers 

designed a novel architecture that combined 1D CNN layers with BiLSTM layers. This approach 

captured both local spectral features and long-term dependencies, leading to improved 

identification accuracy. 

2.4 Conclusion of literature reviews 

   While many authors have explored various languages, our paper focuses specifically on four 

languages. It's worth noting that there is currently no existing dataset for Spoken language 

identification for Ethiopian languages within the existing online literature. Additionally, we employ 

novel methods that have not been previously utilized, such as Deep Neural Network (DNN), 

Convolutional Neural Network (CNN), Long Short Term Memory (LSTM), and Bidirectional Long 

Short Term Memory (BLSTM), for the identification of four Ethiopian languages: Amharigna, 

Oromigna, Tigregna, and Wolayitegna. These models demonstrate superior performance compared 

to traditional methods. 
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CHAPTER THREE 

3. Methodology 

This section elaborates on the methodologies utilized to achieve the research objectives 

successfully. The study is divided into several subsections, covering data collection and annotation, 

audio preprocessing, data partitioning, feature extraction, model training, and model evaluation. 

Particular emphasis is placed on a unique aspect of the research: the identification of specific 

spoken languages within the context of Ethiopian languages. 

3.1 Preparing data samples 

Since there was no existing dataset for spoken language identification in Ethiopian languages, we 

compiled our own dataset by capturing speeches from FM97.1 Ethiopian Radio and downloading 

videos from youtube.com. This approach enabled us to conduct the automatic language 

identification task effectively despite the absence of pre-existing data for the selected languages. 

After downloading and recording[12]; it was necessary to make format change and break apart the 

file in the size required by the systems. After remove silence and make equal size of a large number 

of 16 kHz 16-bit wave data for the four selected different Ethiopian languages (i.e.,Amharigna, 

Oromigna, Tigrigna and Wolaytigna). Each corpus is prepared using a diverse collection of audio 

recordings that encompass various ages, genders, and accents. Each language's prepared for 

200 frames (above 2:30 h) for training (i.e., 50 data samples for each languages and each with 3, 

10, 30 second length) and 20 frames for testing ( i.e., 5 data samples for each languages with 3, 10 

and 30 seconds long). The length of the whole training samples is 200 x3 seconds (i.e., 10 

minutes), 200 x 10 seconds (i.e., 40 minutes) and 200 x 30 (i.e., 100 minutes =2 hours and 30 

minutes long for training). 
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3.2 system architecture 

This section provides an overview of the methods used to develop the proposed Language 

Identification (LID) model, as depicted in Figure 1. It focuses on the stages of corpus preparation, 

the system's architecture, preprocessing techniques, the generation of machine-readable CSV 

datasets, and procedures for model evaluation. Figure 1 illustrates the architecture of the proposed 

LID model, encompassing essential steps like data preprocessing, frame, feature extraction, and 

evaluation model. Each of these components is detailed to demonstrate how the model was 

constructed and evaluated for effective language identification. 

 

 

 

                                                               Figure 3.1 Proposed system architecture 

3.2.1 Data Preprocessing 

After data collection, the initial stage of the Language Identification (LID) system involves 

preprocessing the raw speech data to prepare it for the intended algorithms. Data preprocessing 

encompasses all operations conducted on raw data to ready it for subsequent processing stages. 

This crucial step establishes the foundation for converting the data into a format that can be 

processed efficiently and accurately. 
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3.2.1.1 Data Cleaning 

Audio data cleaning is imperative prior to any further processing steps. Often, during data 

collection through recordings, speakers may use mixed languages such as Amharic with English or 

Amharic with Oromigna. Therefore, to formulate clean data for the proposed system, these mixed 

audios are removed using the pydub package, and the sound files are kept in .WAV format. 

3.2.1.2 Silent Removal 

To eliminate the silent sound from the actual speech .wav files, we utilized the librosa trim 

function. The criterion for removing silence is based on normal sound intensity, which is set to be 

above 10 dB. Decibel measures sound intensity and a threshold of 10 dB is employed to filter out 

silence from speech. Any speech falling below this threshold is removed from the entire sound file. 

This threshold value is selected based on literature review, as several studies have employed the 

same sound intensity level. It is considered a standard value, ensuring that speech quality for 

communication is adequate, with a signal-to-noise ratio (SNR) of -10 dB ≤ SNR. Speech equal to 

or greater than 10 dB ensures satisfactory quality for speech communication. 

3.2.1.3 Framing 

Framing in the context of speech processing to dividing a continuous flow of speech samples into 

fixed-length segments, allowing for systematic processing of the signal in blocks. Speech signals 

are characterized by their non-stationary nature, where sound waves constantly vary over time. To 

accommodate this variability, speech signals are segmented into frames, which are divided into a 

small subdivisions typically measured in seconds or milliseconds. These frames are essential for 

analysis and processing. To prevent the loss of important signal information during segmentation, 

consecutive frames often overlap by 30% to 50%. This overlap ensures that critical aspects of the 

voice signal are not missed due to windowing effects. Researchers can choose from various 

segment lengths such as 3 s, 10 s, 30 s, and others like 5 seconds and 20 seconds, depending on 

their specific needs. In the current study, the researchers opted for intermediate segment lengths of 

3 seconds, 10 seconds, and 30 seconds. These segments were chosen to frame audio segments from 

a library for each language's sounds, facilitating effective analysis and processing. 
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3.2.2 Feature extraction 

In this study, the speech signal undergoes preprocessing before inputting it into the Language 

Identification (LID) system. This preprocessing includes amplifying weaker signals, removing 

prolonged silences, and isolating speech from background noise to enhance clarity for further 

analysis. 

Feature extraction is then employed to convert the processed speech signal into acoustic feature 

vectors that contain speaker-specific information. The researchers utilize the Librosa package, a 

tool commonly used for audio analysis, to extract relevant components from the audio data. Several 

techniques exist for feature extraction, including Linear Predictive Coding (LPC), Mel-frequency 

cepstral coefficients (MFCC), mel-spectrogram, Spectral Contrast, and Relative spectral filtering of 

log domain coefficients (RASTA), among others. Each of these techniques captures distinct aspects 

of an audio speech segment and can be utilized in designing various LID system configurations, 

each with its own complexity and effectiveness. 

In this particular study, the researchers opt for an acoustic-phonetics approach, employing MFCC 

as their chosen feature extraction technique. MFCCs are widely recognized in speech and audio 

processing for their ability to represent the spectral characteristics of sound signals through a set of 

coefficients. These coefficients are derived using the Mel scale, which mimics the nonlinear 

frequency resolution of the human auditory system. The process of computing MFCC involves 

steps such as applying the discrete Fourier transform (DFT), mapping the resulting spectrum onto 

the Mel scale, and taking the logarithm of the amplitude values. 

The Mel scale is pivotal in MFCC computation as it aligns more closely with human auditory 

perception of sound frequencies. This scale utilizes a series of band-pass filters that analyze the 

speech signal across various frequency bands, with the positions of these filters mapped according 

to the Mel scale. The formula for converting from frequency to the Mel scale is integral to this 

process. 

In line with previous research findings, the study employs 20 MFCC coefficients, as these are 

generally sufficient to encapsulate the most significant information within the speech signal. This 

approach ensures that the extracted features effectively capture the essential aspects of the speech 

needed for robust language identification. 
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 Mel(f) = 1125 ln(1 + f/700)                                                                                                    (3.1) 

 

Triangular filters are utilized in MFCC to weight the Discrete Fourier Transform (DFT) of the 

speech, ensuring that the outputs represent the energies of the filter-bank signals. The outputs from 

the band-pass filters are subsequently processed to compute the MFCC using the Discrete Cosine 

Transform (DCT), which is defined as: 

  w[n] = 0.54 - 0.46 cos(2𝜋𝑛/𝐿) 0 ≤ 𝑛 ≤ 𝐿 − 1                                                                             (3.2)  

 

Where, [𝑛] is represents window.  

𝐿 is the speech extracted window or frame 

Most of the audio clips range from zero to three seconds in length for CNN, LSTM, BLSTM, and 

fixed three seconds for DNN-based LIDs. The speech is segmented into frames of 25ms duration, 

with each frame overlapping by 10ms, and each frame is multiplied by a Hamming window to 

smooth out discontinuities in the signal. From these frames, we extract features known as mel-

frequency cepstral coefficients (MFCCs). The Mel-frequency cepstrum represents the audio signal 

on the Mel scale, which is a nonlinear mapping of frequencies that simulates the human ear's 

response to sound by down-sampling higher frequencies. In our implementations, we use the first 

13 cepstral coefficients as the primary features, as is common in similar applications. Figure 3.2 

illustrates a visualization of these features.
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                       Figure 3. 2 The audio sound wave and its cepstral coefficients 

 

 

                             Figure  3. 3 The process of feature extraction 

  Steps  

 Divide the signal into short frames. 

 Calculate the periodogram estimate of the power spectrum for each frame. 

 Utilize the Mel filter bank to analyze the power spectrum and aggregate the energy within 
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each filter. 

 Logarithmically transform all values obtained from the filter bank. 

 Perform a Discrete Cosine Transform (DCT) on the logarithmically transformed filter bank 

energies. 

      The primary objective of feature extraction is to obtain a spectral attribute that aids in 

constructing classifiers for phones or sub-phones. Given speech's non-stationary nature where 

statistical attributes vary rapidly over time it's impractical to extract spectral features from the entire 

utterance. Instead, we focus on small windows of speech that can be assumed to exhibit stationary 

characteristics. Each of these extracted segments is referred to as a frame, capturing spectral 

features specific to a particular sub-phone. 
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3.3 Classification 

In the realm of language identification, several prominent classification techniques are widely 

utilized: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Long Short-Term 

Memory network (LSTM), and Bidirectional Long Short-Term Memory network (BLSTM). 

Deep Neural Networks (DNN) are artificial neural networks distinguished by their multiple 

layers positioned between the input and output layers. Each layer comprises neurons 

interconnected with neurons in adjacent layers. DNNs are renowned for their capacity to achieve 

high accuracy in classification tasks. However, training DNNs can be computationally intensive, 

necessitating powerful hardware such as GPUs or substantial CPU resources. The training 

process is intricate due to its non-guarantee of convergence to an optimal solution. 

For example, in our approach to spoken language identification (SLID) for four Ethiopian 

languages (Amharic, Oromo, Tigrigna, and Wolayitegna), we utilize a DNN architecture. This 

DNN architecture consists of four hidden layers, each comprising 64 units and utilizing the 

Rectified Linear Unit (ReLU) activation function. At the top, a Softmax layer is included with 

fifty classes, corresponding to the identified languages. During training, batches of 30 samples 

are processed per iteration, and training is conducted over 50 epochs. 

The DNN works by iteratively adjusting the weights of connections between neurons to reduce 

the error between predicted and actual outputs, thereby learning to classify input data accurately. 

This methodology leverages the expressive power of deep learning to discern linguistic patterns 

indicative of specific languages, as outlined in the formulas and techniques tailored for SLID in 

Ethiopian languages. 

In feedforward operation, DNNs process input data by passing it through the network in a 

forward direction until it reaches the output layer. Each neuron in a layer computes a weighted 

sum of its inputs, adds a bias, and applies an activation function to generate its output. Here are 

the formulas for DNN operations: 

Weighted Sum: z=Wx+b 
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Z represents weighted sum of inputs. 

W  is the weight matrix that connects the current layer to the previous layer. 

B is represents vector. 

Activation Function: a=σ(z)  where a is the output of the neuron of activation function. σ is the 

activation function (e.g., ReLU). 

Layer-by-Layer Computation the feedforward operation is performed layer by layer until the 

final layer is reached.Each layer applies the weighted sum and activation function to its inputs to 

produce outputs, which serve as inputs to the next layer. 

 Output Layer and Softmax: In SLID, the output typically consists of neurons representing 

the probability distribution over the languages. Softmax activation is often used in the 

output layer to ensure that the outputs represent probabilities.Formula for softmax 

activation (assuming zi is the output of neuron i in the output layer):  

softmax(zi)=     /∑    
 

   
      N is the number of neurons output layer. 

Prediction language with the highest probability output by the softmax layer is selected as the 

predicted language for the input audio. 

Training: 

DNNs are trained using backpropagation with gradient descent-based optimization algorithms. 

Categorical cross-entropy is the loss function computed based on the network's output and the 

ground-truth labels. 

Gradients are backpropagated through the network to update the weights and biases. 

By training a DNN on features extracted from audio recordings in the four Ethiopian languages, 

you can build a SLID system capable of accurately identifying spoken Amharic, Oromo, 

Tigrigna, and Wolayitegna languages. 
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Convolutional neural network (CNN) In the proposed deep learning-based framework for 

spoken language identification, the process begins by converting audio utterances into 

spectrograms, which represent the frequency and time components of the audio signals. These 

spectrograms are then processed using a (CNN) to extract features suitable for classification. 

Finally, softmax activation function is employed to classify the spectrograms into multiple 

languages. 

To delve into how a Convolutional Neural Network operates, we can break down its key 

operations with the following formulas: 

The convolution operation is the core building block of CNNs. It involves applying a filter (also 

known as a kernel) to the input data to produce feature maps. Formula for a 2D convolution 

operation (assuming a single channel input and filter): 

   Formula (I⋆K)(i,j)=∑m∑nI(m,n)⋅K(i−m,j−n)   

I represent the input data (image), K is the filter/kernel, and i, j are the spatial dimensions of the 

output feature map. The summation is performed over all spatial locations (m, n) of the input 

data. 

Activation Function: Following the convolution operation, an activation function is applied 

element-wise to introduce non-linearity into the network. A commonly used activation function 

is ReLU (Rectified Linear Unit). The formula for ReLU is straightforward: ReLU(x) = max(0, 

x). 

Pooling Operation: Pooling layers decrease the spatial dimensions of feature maps while 

preserving essential information. Max pooling is a widely used pooling operation that selects the 

maximum value within a defined window. 

Formula for max pooling (assuming a pooling window of size 2x2):        

MaxPooling(i,j)=max(I(2i,2j),I(2i,2j+1),I(2i+1,2j),I(2i+1,2j+1)) 

Fully Connected Layers: Fully connected layers establish connections between every neuron in 

one layer to every neuron in the subsequent layer, resembling conventional artificial neural 

networks. 
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Formula for a fully connected layer (assuming \( x \) is the input vector, \( W \) is the weight 

matrix, and \( b \) is the bias vector):     z = Wx + b  

     a = activation (z) 

     a ,  output of the layer, and activation is the chosen activation function (e.g., ReLU). 

Softmax activation is often used to ensure that the outputs represent probabilities. Formula for 

softmax activation (assuming zi is the output of neuron i in the output layer): 

           softmax(zi)=     /∑    
 

   
     N is the number of neurons in the output layer. 

Training: 

CNNs are trained using backpropagation with gradient descent-based optimization algorithms. 

The loss function (e.g., categorical cross-entropy) is computed based on the network's output and 

the ground-truth labels. 

Gradients are backpropagated through the network to update the weights and biases. 

    Formula for updating weights using gradient descent:  

      Wnew=Wold−η⋅∂L/∂W 

      bnew=bold−η⋅∂L /∂b     

 L represent loss function, η represent learning rate, and ∂L/∂W  and ∂L/∂b  are represent the 

gradients of the loss function with respect to the weights and biases, respectively. 

By training a CNN on features extracted from audio recordings in the four Ethiopian languages, 

you can build a SLID system capable of accurately identifying spoken Amharic, Oromo, 

Tigrigna, and Wolayitegna languages. 

 Long Short-Term Memory (LSTM): LSTMs are a specialized type of recurrent neural network 

crafted to capture long-term dependencies in sequential data, which makes them well-suited for 

tasks such as language identification from audio sequences. In SLID, the input sequences would 

typically be the extracted features (e.g., MFCCs) from the audio recordings.LSTM Cell 

Operations are consists of several gates and memory cells that control the flow of information 



28 
 

and manage long-term dependencies. The key operations in an LSTM cell are the forget gate, 

input gate, cell state update, and output gate. 

Formulas for LSTM Operations: Let’s denote xt as the input at time step t, ht−1 as the previous 

hidden state, and Ct−1 

=1 as the previous cell state. 

 Forget Gate (ft ):  ft=σ(Wf⋅[ht−1,xt]+bf) where Wf and bf are represent the weights and 

biases of the forget gate, respectively. ft, is represent a vector of values between 0 and 1 

that determines which information to discard from the cell state. 

 Input Gate ( it ): it=σ(Wi⋅[ht−1,xt]+bi)  where Wi and bi are represent the weights and 

biases of the input gate, respectively. And it is a vector of values between 0 and 1 that 

determines which new information to store in the cell state. 

 Candidate Cell State ( ~C~t ): C~t=tanh(WC⋅[ht−1,xt]+bC) where WC and bC are 

represent the weights and biases for the candidate cell state, respectively. And C~t 

represents the new candidate values that could be added to the cell state. 

 Cell State Update ( Ct ):  Ct=ft⊙Ct−1+it⊙C~t where Ct is represent  the updated cell 

state. And ⊙ represents element-wise multiplication. 

 Output Gate ( ot ):  ot=σ(Wo⋅[ht−1,xt]+bo) Wo and bo are represent  the weights and 

biases of the output gate, respectively. And ot determines which information from the cell 

state should be passed to the output. 

 Hidden State ( ht ): ht=ot⊙tanh(Ct) where ht is represent  the output hidden state at time 

step t. and tanh is the hyperbolic tangent activation function. 

These formulas describe the operations within an LSTM cell. By stacking multiple LSTM cells 

together in a recurrent neural network architecture, LSTMs can successfully capture sequential 

patterns in the input audio data, making them suitable for spoken language identification tasks. 

Bidirectional Long Short-Term Memory (BiLSTM) networks are an extension of LSTM 

networks that incorporate information from both past and future time steps, making them 
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effective for capturing context in sequential data. Here's how BLSTM algorithms work and how 

they can be applied to spoken language identification (SLID) for the four languages (Amharic, 

Oromo, Tigrigna, and Wolaytaegna), along with their formulas. A Bidirectional LSTM 

(BLSTM) comprises two LSTM layers: one processes input data in the forward direction, while 

the other processes input data in the backward direction. At each time step, the outputs from both 

LSTM layers are concatenated to capture information from both past and future contexts. This 

bidirectional processing helps in capturing dependencies in both directions, which can be 

beneficial for SLID tasks. Formulas for BiLSTM Operations: Let's denote xt as the input at time 

step t, ht−1 as the previous hidden state, and Ct−1 as the previous cell state. 

Forward LSTM Operations: The forward LSTM processes the input sequence from left to right.It 

computes the forward hidden states →ht and forward cell states →Ct using the standard LSTM 

operations. 

Backward LSTM Operations: The backward LSTM processes the input sequence from right to 

left. It computes the backward hidden states ←ht and backward cell states ←Ct using the 

standard LSTM operations. 

Output Concatenation: At each time step t, the forward and backward hidden states are 

concatenated to form the final hidden state ht.ht=[ht→,←ht] 

BiLSTM Output:The concatenated hidden states ht serve as the output of the BiLSTM network 

at each time step.These outputs can be further processed or fed into additional layers (e.g., fully 

connected layers) for classification tasks such as SLID. 

BiLSTM Training: 

BiLSTM networks are trained using backpropagation through time with gradient descent-based 

optimization algorithms. 

The loss function (e.g., categorical cross-entropy) is computed based on the network's output and 

the ground-truth labels. 

Gradients are backpropagated through both forward and backward LSTM layers to update the 

network's parameters. 
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BiLSTM networks are powerful models for sequence processing tasks like SLID because they 

can effectively capture dependencies in both forward and backward directions. By training a 

BiLSTM network on features extracted from audio recordings in the four Ethiopian languages, 

we can build a robust SLID system capable of accurately identifying spoken Amharic, Oromo, 

Tigrigna, and Wolayitegna languages. 

3.4 Model training  

 The system proposed in this study employs DNN (Deep Neural Network), CNN (Convolutional 

Neural Network), LSTM(Long Short-Term Memory) and BLSTM(Bidirectional Long Short-

Term Memory models). These models utilize MFCC features as inputs and are trained using a 

dataset of acquired audio recordings. 

3.4.1 DNN (Deep Neural Network) 

Following data processing, we extract sound data features such as Mel-frequency cepstral 

coefficients and normalize them to attain zero mean and unit variance. Techniques involved in 

this process may include introducing background noise, adjusting pitch, or modifying playback 

speed. 

Once the features are extracted and normalized, we split the dataset into training, validation, and 

test sets. A collective practice is to allocate 70% of the data for training, 15% for validation, and 

another 15% for testing purposes. 

Model Architecture Design: Design DNN architecture suitable for language identification steps: 

 Input Layer: Accepts the preprocessed audio features (50 data samples for each language 

and each with 3, 10 and 30 seconds length). 

 Hidden Layers: Multiple layers of neurons with activation functions ( ReLU). 

Output Layer: Produces probabilities of each language class using softmax activation. 

Experiment with the number of layers, neurons per layer, and activation functions. 
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               figure 3. 4 Proposed DNN Architecture for LID System 

   Model Training steps: 

 Initialize the DNN's parameters (weights). 

 Define a loss function, such as categorical cross-entropy, to measure the difference 

between predicted and true language labels. 

 Choose an optimization algorithm Adam to minimize the loss function. 

 Train the model on the training data by feeding the preprocessed audio features through 

the network. 

 Monitor the performance on the validation set and adjust hyperparameters accordingly to 

learning rate or batch size to prevent overfitting. 

Hyperparameter Tuning: Experimenting with various hyperparameters to maximize the model's 

performance on the validation set. 

3.4.2 Convolutional Neural Network (CNN) 

After preprocess the audio data by converting it into MFCCs (Mel-frequency cepstral 

coefficients) or other time-frequency representations that capture the linguistic content of the 

speech. Augment the dataset to increase its variability. Techniques may include adding 

background noise, changing pitch, or altering speed. After MFCCs made we divide the dataset 

into training, validation, and test sets. Typically, you might use 70% for training, 15% for 

validation, and 15% for testing. 

Visible unit v=200 

#hidden unit h=200 

softmax unit s=200 

#hidden unit h=200 

#weights 200*200 
#weights 200*200*200 

#weights 200*200*200*200 
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Model Architecture Design: Design a CNN architecture suitable for language identification: 

 Input Layer: Accepts the spectrogram images. 

 Convolutional Layers: Apply convolutional filters to extract features from the MFCCs 

(Mel-frequency cepstral coefficients) 

 Pooling Layers: Down sample the feature maps to reduce dimensionality. 

 Flatten Layer: Flatten the feature maps into a vector. 

 Fully Connected Layers: Process the flattened features to make predictions. 

 Output Layer: Produces probabilities of each language class using softmax activation. 

 Experiment with different architectures, including the number of convolutional layers, 

filters sizes, and pooling strategies. 

 

            figure 3. 5 Proposed CNN Architecture for LID System 

Model Training: 

 Initialize the CNN's parameters (weights). 

 Specify a loss function appropriate for multi-class classification tasks, such as categorical 

Feature extraction 
Classification 
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cross-entropy. 

 Choose an optimal algorithm such as Adam to decrease the loss function. 

 Train the model on the training data by feeding the MFCCs (Mel-frequency cepstral 

coefficients)  images through the network. 

 Continuously monitor the performance on the validation set and adjust hyperparameters 

as needed to mitigate overfitting. 

Hyperparameter Tuning: Experimenting with various hyperparameters to maximize the model's 

performance on the validation set. 

3.4.3 Long Short-Term Memory (LSTM) 

Building a language identification system based on LSTM networks involves adapting the LSTM 

architecture to process sequential data effectively. After gathering a dataset containing audio 

samples from multiple languages and Preprocess the audio data by converting into MFCCs (Mel-

frequency cepstral coefficients),other time-frequency representations that capture the linguistic 

content of the speech. Augmenting the dataset to increase its variability. Techniques may include 

adding background noise, changing pitch, or altering speed. After feature extraction MFCCs we 

divided the dataset into training, validation, and test sets. Typically, you might use 70% for 

training, 15% for validation, and 15% for testing. 

Model Architecture Design 

 

                      figure 3. 6 Proposed LSTM Architecture for LID System 
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 Input Layer: Accepts sequences of features (e.g., MFCC vectors or spectrogram frames). 

 LSTM Layers: To effectively capture temporal dependencies in the data, stack one or 

more LSTM layers. 

 Optional Bidirectional LSTM: Consider using Bidirectional LSTMs to capture 

information both past and future contexts. 

 Output Layer: Produces probabilities of each language class using softmax activation. 

 Conduct experiments with various LSTM configurations, including different numbers of 

LSTM layers, varying numbers of hidden units, and adjusting dropout rates. 

Model Training: 

 Initialize the LSTM's parameters (weights). 

 Define a loss function suitable for multi-class classification tasks, such as categorical 

cross-entropy. 

 Choose an optimal algorithm such as Adam to decrease the loss function. 

 Train the model on the training data by feeding the sequences of features through the 

network. 

 Continuously monitor the performance on the validation set and adjust hyperparameters 

as needed to mitigate overfitting. 

Hyperparameter Tuning: Experimenting with various hyperparameters to maximize the model's 

performance on the validation set. 

3.4.4 Bidirectional Long Short-Term Memory (BLSTM) 

Networks involve leveraging the bidirectional processing capabilities of BLSTMs to capture 

contextual information from both past and future time steps effectively. After gathering a dataset 

containing audio samples from multiple languages, Preprocess the audio data by converting into 

MFCCs (Mel-frequency cepstral coefficients) other time-frequency representations that capture 

the linguistic content of the speech. Augmenting the dataset to increase its variability. 

Techniques may include adding background noise, changing pitch, or altering speed. After 
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feature extraction MFCCs we divided the dataset into training, validation, and test sets. 

Typically, you might use 70% for training, 15% for validation, and 15% for test. 

Model Architecture Design: Design a BLSTM-based architecture suitable for language 

identification: 

 Input Layer: Accepts sequences of features (e.g., MFCC frames). 

 Bidirectional LSTM Layers: Stack one or more Bidirectional LSTM layers to capture 

information from both past (Backward) and future (Forward) contexts effectively. 

 Optional Additional Layers: You can add fully connected layers or other types of layers 

for further processing before the output layer. 

 Output Layer: Produces probabilities of each language class using softmax activation. 

 Experiment with different BLSTM configurations, including the number of BLSTM 

layers, hidden units, and dropout rates. 

 

                figure 3. 7 Proposed BLSTM Architecture for LID System                      

 



36 
 

Model Training: 

 Initialize the BLSTM's parameters (weights). 

 Specify a loss function appropriate for multi-class classification tasks, such as categorical 

cross-entropy. 

 Choose an optimal algorithm such as Adam to reduce the loss function. 

 Train the model on the training data by feeding the sequences of features through the 

network. 

 Monitor the performance on the validation set and adjust hyperparameters accordingly to 

prevent over fitting. 

Hyperparameter Tuning: Experimenting with various hyperparameters to maximize the model's 

performance on the validation set. 

3.5 Evaluation metrics 

This study employs a confusion matrix evaluation method to evaluate the classification model's 

performance and predict outcomes on test data. The experiment is divided into two phases: initial 

parameter tuning using a validation dataset, followed by final model testing using an independent 

test set. Upon evaluating the results, an analysis will be conducted to address the research 

problem. 

The dataset consists of four labels representing the languages Amharic, Oromiffa, Tigray, and 

Wolayta. Therefore, the confusion matrix used pertains to multi-class classification. This method 

is employed to evaluate models proposed for these four languages. Evaluation metrics such as 

accuracy, precision, recall, and F1 score are utilized to gauge performance: 

 Accuracy measures the overall correctness of the model, calculated as (TP + TN) / (TP + 

TN + FP + FN), where true positives (TP), true negatives (TN), false positives (FP), and  

false negatives(FN). 
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 Precision measures the fraction of correctly identified positive samples out of all samples 

identified as positive, calculated as TP / (TP + FP). 

 Recall measures the fraction of correctly identified positive samples out of all actual 

positive samples, calculated as TP / (TP + FN). 

 The F1 score is the harmonic mean of precision and recall, providing a balanced measure 

that combines both metrics. It is calculated as 2 * (Precision * Recall) / (Precision + 

Recall). 

When assessing a language identification model, these metrics collectively offer a thorough 

evaluation of its performance, encompassing accuracy, precision, recall, and overall 

discriminatory capability. 

3.6 Rectified Linear Unit (ReLU) 

The Rectified Linear Unit activation function is widely adopted in various neural network 

architectures such as DNNs, CNNs, LSTMs, and BLSTMs due to its straightforward 

implementation and effectiveness in training deep models. Let's explore its application in each of 

these architectures for tasks related to spoken language identification: 

DNN (Deep Neural Network): In DNNs designed for spoken language identification, ReLU 

activation is typically applied to the hidden layers of the network [12]. Following the processing 

of input features through each hidden layer, the resulting outputs undergo element-wise 

transformation through the ReLU activation function, defined as f(x)=max(0,x)f(x) = \max(0, 

x)f(x)=max(0,x). This function outputs the input value if it is positive and zero otherwise, 

thereby introducing non-linearity to allow the network to capture complex patterns and 

relationships in the data. 

CNN (Convolutional Neural Network): In CNNs used for spoken language identification, 

ReLU activation is frequently employed following each convolutional layer [18]. After applying 

convolutional filters to the input Mel-frequency cepstral coefficients (MFCC) and performing 

operations such as pooling, the resultant feature maps undergo ReLU activation. This use of 

ReLU introduces non-linearity, enabling the CNN to effectively capture intricate patterns and 

features inherent in the MFCC data. 
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LSTM (Long Short-Term Memory): In systems based on LSTMs for language identification, 

ReLU activation is not typically used directly within the LSTM layers themselves. LSTMs 

typically employ activation functions such as hyperbolic tangent (tanh) or sigmoid within their 

gates to control the information flow. However, ReLU activation may be employed in 

feedforward connections or after the LSTM layers to introduce additional non-linearity [11]. 

BLSTM (Bidirectional Long Short-Term Memory): Similar to LSTMs, ReLU activation is 

not typically used within BLSTM layers themselves [24]. Instead, ReLU can be applied in 

feedforward connections or after the BLSTM layers to introduce non-linearity and enhance the 

network's ability to learn complex relationships. 

In summary, the ReLU activation function is commonly utilized in the hidden layers of DNNs 

and CNNs for spoken language identification tasks. It plays a essential role in introducing non-

linearity, enabling these models to effectively learn intricate patterns in the data. While not 

commonly used within LSTM and BLSTM layers directly, ReLU can still be incorporated 

elsewhere in the network architecture to enhance its non-linear capabilities. 

3.7 Cross-entropy  

The cross-entropy loss function finds application across various neural network architectures, 

including DNNs, CNNs, LSTMs, and BLSTMs, particularly for classification tasks like spoken 

language identification. Here's how it is utilized in each of these architectures: 

DNN (Deep Neural Network): In a DNN designed for spoken language identification, the 

cross-entropy loss function is computed following the application of softmax activation to the 

output layer [12]. After processing input features through multiple hidden layers, the final layer 

of the DNN comprises neurons corresponding to the number of language classes. Softmax 

activation is applied to these neurons to generate a predicted probability distribution across 

language classes. The cross-entropy loss function measures the disparity between these predicted 

probabilities and the actual labels. This loss is computed across the entire training dataset and 

minimized using optimization techniques like stochastic gradient descent (SGD). 
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CNN (Convolutional Neural Network): Similarly, in a CNN for spoken language 

identification, the cross-entropy loss function is computed after applying softmax activation to 

the output layer. The input spectrogram passes through convolutional and pooling layers to 

extract features, and the resulting feature map is flattened and served into one or more fully 

connected layers [23]. Softmax activation at the final layer provides the predicted probability 

distribution over language classes, with the cross-entropy loss function evaluating the disparity 

between these predictions and the ground truth labels. 

LSTM (Long Short-Term Memory): In systems based on LSTMs for language identification, 

the cross-entropy loss function is applied in a comparable manner [11]. Sequential input data 

(e.g., MFCCs) is processed through one or more LSTM layers, and the final LSTM layer 

produces logits for each time step. Softmax activation converts these logits into a probability 

distribution across language classes, and the cross-entropy loss function is then computed to 

assess the agreement between predicted probabilities and actual labels. 

BLSTM (Bidirectional Long Short-Term Memory): Similarly, the cross-entropy loss function 

is employed in BLSTM-based language identification systems [11],[12]. BLSTMs differ in their 

bidirectional processing of input sequences, where both forward and backward LSTM layers 

capture information from past and future contexts. Softmax activation is applied to combined 

outputs from these layers to derive the probability distribution over language classes, with the 

cross-entropy loss function subsequently measuring the discrepancy between predicted and true 

labels. 

In summary, the cross-entropy loss function operates in the output layer of DNNs, CNNs, 

LSTMs, and BLSTMs within spoken language identification systems. Its role is crucial in 

quantifying the difference between predicted and actual probabilities, guiding the optimization 

process during training to enhance the model's performance. 

 3.8 Softmax activation 

Softmax is a commonly employed activation function in the output layer of neural networks 

designed for multi-class classification tasks, including those implemented with DNNs, CNNs, 
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LSTMs, and BLSTMs for spoken language identification. Here’s how Softmax is employed in 

each of these architectures: 

 DNN (Deep Neural Network): In a DNN designed for spoken language identification, 

Softmax is typically applied to the output layer. After processing input features through 

multiple hidden layers, the final layer of the DNN consists of neurons corresponding to 

the number of target language classes [12]. Softmax activation transforms the raw scores 

from these neurons into a probability distribution across the language classes. Each 

neuron’s output represents the probability of its corresponding language class. 

 CNN (Convolutional Neural Network): In a CNN tailored for spoken language 

identification, Softmax is used in the final fully connected layer. Following feature 

extraction from the input spectrogram via convolutional and pooling layers [12], the 

resulting features are flattened and fed into one or more fully connected layers. Softmax 

activation is applied to the neurons in the final fully connected layer to generate a 

probability distribution over the language classes. 

 LSTM In an LSTM-based language identification system, Softmax is applied to the 

output layer [11]. After processing sequential input data (such as MFCC frames) through 

one or more LSTM layers, the final LSTM layer produces a vector of logits for each time 

step. Softmax activation converts these logits into probabilities for each language class. 

Typically, the probabilities across all time steps are averaged to derive the final 

prediction. 

 BLSTM In a BLSTM-based language identification system, Softmax is employed 

similarly to the LSTM architecture [24]. The distinction lies in the bidirectional 

processing of input sequences, where both in forward and backward LSTM layers extract 

information from past and future contexts. Softmax activation is applied to the combined 

outputs of these layers to produce a probability distribution over the language classes. 

In essence, Softmax activation in DNNs, CNNs, LSTMs, and BLSTMs for spoken language 

identification systems involving Amharigna, Oromigna, Tigregna, and Wolayitegna languages 

converts raw outputs into probabilities. This enables the models to predict the likelihood of 

different language classes effectively. 
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3.9 Overfitting Problem 

Deep Neural Networks (DNNs), CNNs, LSTMs, and related architectures introduce layers of 

abstraction that can potentially lead to overfitting. Overfitting occurs when a model fits the 

training data closely but fails to generalize well to predict unseen or unknown data accurately. To 

determine if a model is overfitting, we employ a technique known as cross-validation. This 

method divides the data into two sets: the training set and the validation set. The training set is 

utilized to train the model, while the validation set is used solely to evaluate the model's 

performance. 

Metrics calculated on the training set indicate how effectively the model learns during training. 

Meanwhile, metrics computed on the validation set evaluate the model's generalization ability, 

specifically its accuracy in predicting new data. Evaluation Metrics such as loss and accuracy are 

measured on the training set, while val_loss and val_accuracy represent these metrics on the 

validation set. For example, if a model achieves approximately 86% accuracy on the training set 

and 84% on the validation set, it is expected to perform around 84% accuracy on new data. 

However, if the accuracy metric increases while val_accuracy decreases, it indicates that the 

model is fitting the training set closely but failing to generalize to new data. This scenario 

suggests overfitting, where the model starts capturing noise rather than meaningful patterns in 

the data. 

3.9.1 Overfitting Solution 

To evaluate the issue of overfitting, we employ a regularization practice known as dropout. 

Dropout involves randomly omitting units or neurons from the hidden layers during the training 

process [26]. This technique helps mitigate overfitting by reducing the model's reliance on 

specific neurons, thereby excluding rare dependencies. Dropout regularization has proven highly 

effective, especially when training Deep Neural Networks with restricted amounts of data [17]. 
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 CHAPTER FOUR 

4.  DISCUSSION AND RESULT  

4.1 OVERVIEW 

Detecting languages from audio files is essential in applications like speech recognition, 

language identification, and natural language processing(NLP). On this Thesis, we conducted 

experiments to assess the performance of various deep learning algorithms for this task using 

audio data. 

Our primary goal was to assess the efficiency of four deep learning algorithms: CNN, DNN, 

LSTM and Bidirectional Long Short-Term Memory (BiLSTM) networks, specifically for 

identifying languages from audio files. Additionally, we aimed to compare their performance 

across different durations of audio segments (3 seconds, 10 seconds, and 30 seconds). 

We utilized a dataset comprising audio recordings from four Ethiopian languages: Oromiffa, 

Amharic, Wolayta, and Tigray. Each language category contained audio files sampled at a 

standardized rate. Mel-frequency cepstral coefficients were mined from these audio files to 

represent their spectral features. 

Separate models were trained for each algorithm using the extracted MFCC features, varying the 

duration of audio segments. Models were trained on a subset of the dataset and evaluated on a 

held-out test set to measure their performance. 

The outcomes of our study are crucial for advancing language detection systems and deep 

learning applications. Understanding how different algorithms perform in language detection 

tasks helps in selecting appropriate models for practical applications, thereby increasing the 

accuracy and efficiency of language processing systems. 

In the subsequent sections, we will present detailed results from our experiments for each 

machine learning algorithm individually. We will begin by discussing the performance of CNN, 

followed by DNN, LSTM, and BLSTM models across 3s, 10s, and 30s audio segments. Each 
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section will include a comprehensive analysis of results, followed by discussions on their 

implications. 

4.2 Overview of methods  

4.2.1 Dataset Collection 

Selection Criteria: Choose audio recordings that represent the diversity of the target languages 

(Oromiffa, Amharic, Wolayta, and Tigray) in terms of speakers, accents, and contexts. 

Source: We compiled our own dataset by recording speeches from FM97.1 Ethiopian Radio and 

downloading videos from youtube.com specifically for conducting the automatic language 

identification task in this study. 

Each language's prepared for about 200 (above 2 h) for training (i.e, 50 data samples for each 

languages and each with 3, 10, 30 second length) and 20 for testing (i.e., 5 data samples for each 

language also with 3, 10 and 30 seconds long). The length of the whole training samples is 200 

x3 seconds (i.e., 10 minutes), 200 x 10 seconds (i.e., 40 minutes) and 200 x 30 (i.e., 100 minutes 

=2 hours and 30 minutes long). 

4.2.2 Feature Extraction 

MFCC Extraction: Utilize feature representations Mel-frequency cepstral coefficients (MFCCs) 

for the audio data.  

Librosa Library: Employ the Librosa library in Python to extract MFCC features from the audio 

records. 

Duration Segmentation: Extract MFCC features for audio segments of different durations, 

including 3 seconds, 10 seconds, and 30 seconds. 

4.2.3 Model Training 

 Convolutional Neural Networks (CNN) 

 Design and train CNN models using MFCC features as input. 

 Experiment with various CNN architectures, including the number of 

convolutional layers, filter sizes, and pooling strategies. 
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 Implement methods such as batch normalization and dropout to enhance the 

generalization of the model and mitigate overfitting. 

 Deep Neural Networks (DNN) 

 Construct deep neural network architectures to learn complex patterns from the 

MFCC features. 

 Explore different configurations of hidden layers, activation functions, and 

regularization techniques. 

 Use optimization algorithms such as Adam to train the DNN models. 

 LSTM (Long Short-Term Memory Networks) 

 Implement LSTM architectures to capture temporal dependencies in the 

sequential MFCC representations. 

 Configure the LSTM layers with appropriate hidden units and recurrent dropout 

to prevent vanishing gradients and overfitting. 

 Train LSTM networks using backpropagation through time (BPTT) to optimize 

the model parameters. 

 Bidirectional LSTM (BLSTM) Networks 

 Extend the LSTM models with bidirectional connections to capture information 

from both past and future contexts. 

 Stack multiple bidirectional LSTM layers to learn hierarchical representations of 

the MFCC features. 

 Apply dropout regularization to the BLSTM layers to improve model robustness 

and prevent overfitting. 
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4.2.4 Model Evaluation 

Table 4. 1 : standard test accuracy achieved by each model 

Model Test Accuracy 

CNN 0.85 

DNN 0.82 

LSTM 0.87 

BLSTM 0.89 

 

Train-Test Split 

 Purpose: The dataset was partitioned into a training set for model training and a test set 

for model evaluation. 

 Ratio: The data was divided using a 70:30 ratio, with 70% allocated to the training set, 

15% for validation, and 15% for testing. 

 Randomization: Before partitioning, the dataset underwent random shuffling to remove 

any inherent order or biases. 

Performance Metrics such as accuracy, precision, recall and F1-score 

Cross-Validation 

- K-Fold Cross-Validation divides the dataset into k equal-sized folds, where k represents the 

number of folds. The model is trained iteratively on k-1 folds and validated on the remaining 

fold. 

- Purpose: This technique allows for evaluating the model's performance across various subsets 

of the data, reducing the risks of overfitting or underfitting to a specific data split. 

- Average Metrics: Average accuracy, precision, recall, and F1-score are calculated across all 

folds to offer a more robust evaluation of the model's performance. 

Statistical Analysis 

 Significance Level: A determined significance level (e.g., α = 0.05) was set to determine 
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whether observed differences in performance were statistically significant. 

 Multiple Comparisons Correction: Corrections like Bonferroni or Holm's method were 

applied when conducting multiple hypothesis tests to control the familywise error rate. 

4.2.5 Overview of Results 

Based on the provided results, we can observe the demonstration of different models 

(CNN, DNN, LSTM, and BLSTM) for language detection at different time intervals (3 s, 

10 s, and 30 s). The models were trained with a learning rate of 0.0001, a batch size of 

32, and the Adam optimizer over 50 epochs. The reported percentages represent the 

accuracy achieved by each model on the test dataset. 
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4.3 Implementation 

4.3.1 For the 3-second results 

Table 4.2 The BLSTM model demonstrated the highest accuracy among the languages tested, 

specifically for Amharigna, Tigregna, and Wolayitegna, achieving an accuracy rate of 95% over 

a 3-second duration. Additionally, it achieved an F1-score of 95.7%, with precision at 95.2% and 

recall at 95%. Following this, the LSTM model performed well for Wolayta002, Tigray004, and 

Oromiffa, achieving an accuracy of 92.5%. It obtained an F1-score of 93.5% for Wolayta002 and 

92.8% for Tigray004 and Oromiffa, with precision scores of 93.1% and 91.6%, and a recall of 

95%. The DNN model for Wolayta002 achieved an accuracy of 92.5% and an F1-score of 

93.5%, with precision at 93.1% and recall at 95%. Lastly, the CNN model for Tigray004 

achieved an accuracy of 92.5%, with an F1-score of 92%, precision at 91%, and recall at 94%.  

Model Language 

Learning 

 rate 

Batch 

 size Optimizer Epoch Accuracy(%) loss F1 score precision Recall 

CNN 

Amharic 0.0001 32 adam 50 85 0.57 84.9 85 89.1 

oromiffa 0.0001 32 adam 50 89.9 0.52 89.8 88.7 92.5 

tigray 0.0001 32 adam 50 92.5 0.49 92 91 94 

wolayta 0.0001 32 adam 50 85 0.6 84.1 84.3 87.5 

DNN 

amharic 0.0001 32 adam 50 85 0.58 84.8 84.1 86.9 

oromiffa 0.0001 32 adam 50 90 0.42 89.6 89.2 91.3 

tigray 0.0001 32 adam 50 87.5 0.54 86.9 86.3 89.7 

wolayta 0.0001 32 adam 50 92.5 0.39 93.5 93.1 95 

LSTM 

amharic 0.0001 32 adam 50 90 0.43 91.4 91.4 93.3 

oromiffa 0.0001 32 adam 50 92.5 0.62 92.8 91.6 95 

tigray 0.0001 32 adam 50 92.5 0.45 93.5 93.1 95 

wolayta 0.0001 32 adam 50 92.5 0.47 93.5 93.1 95 

BLSTM 

amharic 0.0001 32 adam 50 95 0.5 95.7 95.2 96.6 

oromiffa 0.0001 32 adam 50 92.5 0.55 93.5 93.1 95 

tigray 0.0001 32 adam 50 95 0.62 95.7 95.2 96.6 

wolayta 0.0001 32 adam 50 95 0.52 95.7 95.2 96.6 

                            Table  4. 2 The results of 3s test data duration 
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4.3.2 For the 10-second results 

Table 4.3 illustrates that with a duration of 10 seconds, the BLSTM model achieved the highest 

accuracy among the tested languages, particularly for Oromiffa005, with an accuracy of 95%. It 

also attained an F1-score of 94.5%, precision of 94.1%, and recall of 95.5%. Following this 

model is the DNN model across all test languages, achieving an accuracy of 92.5%, an F1-score 

of 91.6%, precision of 91.2%, and recall of 93%. The CNN model for Tigray005 achieved an 

accuracy of 90%, with an F1-score of 89.3%, precision of 88.7%, and recall of 91.3%. Lastly, the 

LSTM model performed well for Tigray005 and Oromiffa005, both achieving an accuracy of 

87.5%. 

Model Language 

Learning 

 rate 

Batch 

 size Optimizer Epoch Accuracy(%) loss 

F1 

score precision Recall 

CNN 

amharic 0.0001 32 adam 50 80 0.86 82.5 85.4 85.8 

oromiffa 0.0001 32 adam 50 85 0.42 85.6 85 88 

tigray 0.0001 32 adam 50 90 0.36 89.3 88.7 91.3 

wolayta 0.0001 32 adam 50 80 0.56 79.6 80 83.6 

DNN 

amharic 0.0001 32 adam 50 92.5 0.3 91.6 91.2 93 

oromiffa 0.0001 32 adam 50 92.5 0.25 91.5 91.2 93 

tigray 0.0001 32 adam 50 92.5 0.25 91.6 91.2 93 

wolayta 0.0001 32 adam 50 92.5 0.24 91.6 91.2 93 

LSTM 

amharic 0.0001 32 adam 50 80 0.6 79.3 80.3 83 

oromiffa 0.0001 32 adam 50 87.5 0.58 86.5 86.8 89.4 

tigray 0.0001 32 adam 50 87.5 0.56 86.9 86.4 88.6 

wolayta 0.0001 32 adam 50 77.5 0.64 76.5 76.8 79.4 

BLSTM 

amharic 0.0001 32 adam 50 87.5 0.42 85.2 85.6 87.2 

oromiffa 0.0001 32 adam 50 95 0.24 94.5 94.1 95.5 

tigray 0.0001 32 adam 50 92.5 0.3 91.4 90.9 93 

wolayta 0.0001 32 adam 50 87.5 0.67 87.1 87.4 89.4 

 

Table  4. 3 The results of 10s test data duration 
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4.3.3 For the 30-second results 

Table 4.4 indicates that with a duration of 10 seconds, the BLSTM model achieved the highest 

accuracy among the tested languages, specifically for Oromiffa003 and Tigray005, achieving an 

accuracy of 87.5%. It also obtained an F1-score of 82.3% for Oromiffa003 and 81.9% for 

Tigray005, with precision scores of 85% and 84.8%, and recall scores of 83.4% and 83.2%, 

respectively. Following closely is the DNN model for Amharic004, with an accuracy of 85% and 

an F1-score of 86.7%, precision of 88.5%, and recall of 87.5%. The LSTM model for 

Amharic004 also achieved an accuracy of 85%, with an F1-score of 84.6%, precision of 

84.6.7%, and recall of 85%. Lastly, the CNN model for Wolayta002 attained an accuracy of 

82.5%, with an F1-score of 81%, precision of 85%, and recall of 77%. 

Model Language 

Learning 

 rate 

Batch 

 size Optimizer Epoch Accuracy(%) loss 

F1 

score precision Recall 

CNN 

amharic 0.0001 32 adam 50 80 0.6 79.2 84.2 79.7 

oromiffa 0.0001 32 adam 50 80 0.57 80.2 83 79 

tigray 0.0001 32 adam 50 75 0.9 74.2 85.9 72.2 

wolayta 0.0001 32 adam 50 82.5 0.7 81 85 77 

DNN 

amharic 0.0001 32 adam 50 85 0.5 86.7 88.5 87.5 

oromiffa 0.0001 32 adam 50 80 0.56 80 82 83 

tigray 0.0001 32 adam 50 77.5 0.52 77.5 77.9 77.7 

wolayta 0.0001 32 adam 50 82.5 0.5 84.4 85 84.7 

LSTM 

amharic 0.0001 32 adam 50 85 0.49 84.6 84.6 85 

oromiffa 0.0001 32 adam 50 80 0.6 79 79.8 81 

tigray 0.0001 32 adam 50 77.5 0.63 76 76.4 78.6 

wolayta 0.0001 32 adam 50 80 0.57 79 78 82.6 

BLSTM 

amharic 0.0001 32 adam 50 80 0.7 75.3 77.7 75.2 

oromiffa 0.0001 32 adam 50 87.5 0.6 81.9 85 83.4 

tigray 0.0001 32 adam 50 87.5 0.62 82.3 84.8 83.2 

wolayta 0.0001 32 adam 50 85 0.58 81.6 82.1 80.9 

 Table 4. 4 The results of 30s test data duration.

 

Overall, the BLSTM model consistently achieved the highest average accuracy across all time 

intervals, followed by the DNN model. The DNN and LSTM models showed competitive 
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performance but generally achieved slightly lower accuracies. It's important to notice that these 

results are specific to the given dataset and settings. Further evaluation and experimentation may 

be necessary to assess the models performance on different datasets and tasks

 

4.3.4 Comparison of each model 

Accuracy 

Model 3s (%) 10s (%) 30s (%) 

CNN 92.5 90 82.5 

DNN 92.5 92.5 85 

LSTMs 92.5 87.5 85 

BiLSTM 95 95 87.5 

Table  4. 5 Comparison of the accuracy of each model 

Prediction accuracy histogram of 3s, 10s and 30 s data samples tested in DNN, CNN, LSTM 

and BLSTM based LID system 

 

Figure 4. 1 Comparison of CNN, DNN, LSTM and BLSTM using MFCC features based LID systems using             

prediction accuracy 
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The Comparison of model CNN, DNN, LSTM and BLSTM in 3, 10 and 30 sec based LID 

systems using prediction Loss. 

Loss 

Model 3s 10s 30s Average Loss 

CNN 0.545 0.55 0.6925 0.595833333 

DNN 0.4825 0.26 0.52 0.420833333 

LSTMs 0.4925 0.595 0.5725 0.553333333 

BiLSTM 0.5475 0.4075 0.625 0.526666667 

 

   Table 4. 6 comparison of each model loss average values 

4.3.5 The confusion matrices of the models proposed 

When utilizing the confusions matrices to predict outcomes of each language, the examined 

instances of confusion that arose. Specifically, we analyzed the proposed confusion matrix of 

models, focusing on a specific feature: the MFCC (Mel-frequency cepstral coefficients). Section 

4.2, Figure 4.2 presents this confusion matrix, evaluating the performance of model's on the test 

dataset by quantifying correct and incorrect classified test samples within each class. 

Figure 4.2 (a, b, c) illustrates the distribution of sample data classified as (TP) True Positive, 

(FP) False Positive, (TN) True Negative, and (FN) False Negative across the 4 classes. For 

instance, regarding Amharic as the actual class, the model correctly identified 51 samples as 

Amharic. However, it misclassified 5 samples as Wolayta and 4 samples as Tigray. 

In summary: 

 The diagonal symbols represent correct predictions. 

 Off-diagonal symbols represent misclassifications. 

Based on this confusion matrix: The model performed well overall, correctly classifying the 

majority of samples. However, it made some errors, particularly misclassifying Amharic samples 

as Wolayta and Tigray. 
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Oromiffa 24 0 0 0 Oromiffa 24 0 0 0 Oromiffa 24 0 0 1 

Amharic  0 51 5 4 Amharic  3 54 2 1 Amharic  0 56 1 0 

Wolayta 0 0 36 0 Wolayta 3 2 20 2 Wolayta 1 0 31 4 

Tigray 0 0 0 48 Tigray 1 0 0 39 Tigray 3 0 0 38 

 

Oromiffa Amharic  Wolayta Tigray 

 

Oromiffa Amharic  Wolayta Tigray 

 

Oromiffa Amharic  Wolayta Tigray 

 

(A) predicted label 

 

(B) predicted label 

 

(c) predicted label 

Figure 4. 2 Confusion matrices for the BLSTM model at (a) 3s, (b) 10s, and (c) 30s 

Oromiffa 18 0 0 0 Oromiffa 24 0 0 0 Oromiffa 23 1 0 0 

Amharic  2 27 2 4 Amharic  0 52 0 4 Amharic  4 45 9 2 

Wolayta 2 1 23 1 Wolayta 4 0 32 0 Wolayta 0 1 35 0 

Tigray 3 0 0 27 Tigray 4 0 0 36 Tigray 0 6 5 27 

 

Oromiffa Amharic  Wolayta Tigray 

 

Oromiffa Amharic  Wolayta Tigray 

 

Oromiffa Amharic  Wolayta Tigray 

 

(A) predicted label 

 

(B) predicted label 

 

(C) predicted label 

 

Figure 4. 3 Confusion matrices for the CNN model at (a) 3s, (b) 10s, and (c) 30s 

 

Amharic  24 0 0 0 Amharic  22 0 1 0 Amharic  23 0 0 1 

Oromiffa 1 47 8 4 Oromiffa 5 44 4 4 Oromiffa 4 48 5 2 

Tigray 0 0 36 0 Tigray 6 1 29 0 Tigray 0 1 35 0 

Wolayta 0 0 0 40 Wolayta 0 0 2 38 Wolayta 1 0 3 36 

 

Amharic  Oromiffa Tigray Wolayta 

 

Amharic  Oromiffa Tigray Wolayta 

 

Amharic  Oromiffa Tigray Wolayta 

 

(A) predicted label 

 

(B) predicted label 

 

(C) predicted label 

 

Figure 4. 4 Confusion matrices for the LSTM model at (a) 3s, (b) 10s, and (c) 30s 

 

Oromiffa 24 0 0 0 Oromiffa 22 0 1 0 Oromiffa 23 0 0 1 

Amharic  1 47 8 4 Amharic  5 44 4 4 Amharic  4 48 5 2 

Wolayta 0 0 36 0 Wolayta 6 1 29 0 Wolayta 0 1 35 0 

Tigray 0 0 0 40 Tigray 0 0 2 38 Tigray 1 0 3 36 

 

Oromiffa Amharic  Wolayta Tigray 

 

Oromiffa Amharic  Wolayta Tigray 

 

Oromiffa Amharic  Wolayta Tigray 

 

(A) predicted label 

 

(B) predicted label 

 

(C) predicted label 

Figure 4. 5 Confusion matrices for the DNN model at (a) 3s, (b) 10s, and (c) 30s 
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Validation and Training accuracy and also validation loss and training of 3s, 10s and 30 s 

data samples tested in DNN, CNN, LSTM and BLSTM based LID system. 

Additionally, samples from Figures 4.2 to 4.4 provide a perfect illustration of the BLSTM 

model's accuracy and cross-entropy (loss) performance evaluation throughout both the validation 

and training stages. At epoch 50, the training accuracy is 95%, with a precision of 95.2% and a 

recall of 96.5%. Similarly, the BLSTM architecture exhibits validation losses and training of 

0.573 and 0.05820, respectively. 

4.3.6 Evaluation metrics accuracy and loss of proposed system 

4.3.6.1 CNN Evaluation metrics accuracy and loss 

 

 

 

 

  

Figure 4.6 CNN model with a 3-second duration: accuracy and loss.  

 

 

 

 

 

 

 

Figure 4.7 CNN model with a 10-second duration: accuracy and loss.
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Figure 4.8 CNN model with a 30-second duration: accuracy and loss. 

4.3.6.2 DNN Evaluation metrics accuracy and loss 

 

 

 

 

 

             

 

 Figure 4.9  DNN model with a 3-second duration: accuracy and loss. 

 

 

 

 

 

 

 

 

 

Figure 4.10 CNN model with a 10-second duration: accuracy and loss. 
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Figure 4.11 DNN model with a 30-second duration: accuracy and loss. 

4.3.6.3 LSTM Evaluation metrics accuracy and loss 

 

 

      Figure 4.12 LSTM model with a 3-second duration: accuracy and loss. 
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Figure 4.13 LSTM model with a 10-second duration: accuracy and loss. 

 

 

 

      Figure 4.14 LSTM model with a 30-second duration: accuracy and loss. 
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4.3.6.4 BLSTM Evaluation metrics accuracy and loss 

 

      Figure 4.15 BLSTM model with a 3-second duration: accuracy and loss. 

 

      Figure 4.16 BLSTM model with a 10-second duration: accuracy and loss.

 

      Figure 4.6 BLSTM model with a 30-second duration: accuracy and loss 
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4.3.7 Average Execution time of proposed system 

 

Time of execution 

Model 3s(%) 10s(%) 30s(%) Average time(sec) 

CNN 99.25 169.25 606.75 291.75 

DNN 31.645 57.525 123.625 70.93166667 

LSTM 69.2 105.175 470.25 214.875 

BLSTM 106.4 521.65 1521.25 716.4333333 

 

      Table 4.7 the comparison of each model Average execution time (sec)  

 

 

 

           Figure 4. 7 Comparison of each model Average execution time (sec) histogram. 

 

 

 

 

 

 

 

0

200

400

600

800

1000

1200

1400

1600

3s(%) 10s(%) 30s(%) Average time(sec)

CNN

DNN

LSTM

BLSTM



59 
 

Comparison between the proposed model and existing language identification models  

Authors Models(algorithms) 
Features 

extraction 
Performed (Accuracy) 

1 GMM MFCC 91% 

11 LSTM and BLSTM MFCC 93% 

18 GMM MFCC 
93% 

20 MLC, GC and KNNC 
no feature 

identified 

MLC achieves the highest score and 

GC follows 

21 BLSTM 
no feature 

identified BLSTM achieves the highest score 

22 DNN and LSTM 
no feature 

identified LSTM achieves the highest score 

23 CNN and SVM Spectrogram CNN  classification achieved 93%, svm 

achieved 82.8% 

12 ANN, CNN and LSTM MFCC LSTM achieve 88.8%, CNN 88.1% and 

ANN 87.5 

24 
The combined 1D CNN layers 

with BLSTM layers method 
Spectrogram 

improved best accuracy 

Proposed 
DNN, CNN, LSTM and 

BLSTM 
MFCC 

BLSTM achieves 95% the highest 

score 
                                         

                           Table 4.8  Comparison of the proposed model with existing language identification models. 

4.3.8 Effect of Duration 

Based on the above results, we can note that the accuracy of the models tends to decrease as the 

duration of the input increases. This trend is evident when comparing the accuracy at 3 s, 10 s, 

and 30 s. Generally, the models perform better at shorter durations, with higher accuracy scores. 

As the duration increases, the models struggle to maintain the same level of accuracy. 

4.3.9 Impact of Language 

The results also suggest that the impact of languages on model performance varies. Different 

languages, such as Amharic, Oromiffa, Tigray, and Wolayta, were used in the evaluation. The 

accuracy scores achieved by the models differ across these languages. For example, the CNN 

model achieved higher accuracy for Tigray language compared to other languages. 

4.3.10 Discussion of Accuracy and Misclassifications 

Overall, the models achieved covered accuracy scores for shorter durations, ranging from 75% to 
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95%. However, as the duration increased, the accuracy dropped, indicating the difficulty of 

accurately classifying longer speech segments. Misclassifications were likely to occur more 

frequently for longer durations, leading to lower average accuracy scores. This suggests that the 

models may have limitations in capturing long-term dependencies and context. 

4.3.11 Limitations and Challenges 

There are several limitations and challenges associated with the models and the experimental 

setup. One limitation is the fixed learning rate, batch size, and optimizer used for training. These 

hyperparameters might not be optimal for all languages and durations, potentially affecting the 

model performance. Additionally, the small batch size of 32 might limit the model's ability to 

generalize well. Another challenge is the limited availability of training data, which might delay 

the models' ability to learn diverse patterns and improve accuracy. 
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CHAPTER FIVE 

5.  CONCLUSION and RECOMMENDATION 

5.1 Conclusion 

In conclusion, we developed a Spoken Language Identification (SLID) system for four Ethiopian 

languages using DNN, CNN, LSTM, and BLSTM algorithms. Our corpus was prepared 

specifically for Amharigna, Tigregna, Oromigna, and Wolaytgna due to the absence of a large-

scale corpus suitable for SLID purposes. The study aimed to evaluate classification results across 

different durations 3, 10, and 30 seconds using MFCC feature extraction. 

Experimental findings revealed that models performed more effectively with shorter speech 

durations, with varying accuracy observed across different languages. While achieving decent 

accuracy scores for shorter durations, maintaining accuracy posed challenges for longer speech 

segments. Notably, the BLSTM algorithm emerged as the most proper method for the Ethiopian 

language identification dataset, achieving the highest accuracy scores: 95% for Amharic, 

Tigregna, and Wolaytgna at 3 seconds, 95% at 10 seconds, and 87.5% at 30 seconds. The DNN 

model followed closely, achieving maximum accuracy of 92.5% at 10 seconds for all languages. 

All experiments were conducted using the Librosa library in Python on a CPU with 1 TB of 

storage and 8 GB of RAM 
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5.2 Future works 

As future work any excited can improve the research by adding more Ethiopian languages and 

neighboring country language, selecting the more recent classification for training and 

increasing the number of features for training and test the system. 

To address the limitations and challenges, future research could explore the influence of different 

hyperparameters for model performance. Increasing the amount of training data, especially for 

longer durations, could also be beneficial. Additionally, investigating more advanced 

architectures, such as transformer-based models, could potentially improve accuracy by 

capturing long-term dependencies more effectively. 

5.3. Recommendation 

In Ethiopia, there is currently no widely available, publicly accessible corpus of speech in 

various languages that can serve as a standard for comparing system performance. Therefore, it 

is recommended to create a shared speech corpus encompassing local languages. This initiative 

would significantly support research in the field of NLP and enhance ongoing investigations in 

the region. 
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