

Deep Learning Approach For Water Management In Ethiopia Farmlands

A Thesis Presented

by

Abel Demelash

to

The Faculty of Informatics

of

St. Mary’s University

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

in

Computer Science

July 24, 2024

ACCEPTANCE

Deep Learning Approach For Water Management In Ethiopia Farmlands

By

Abel Demelash

Accepted by the Faculty of Informatics, St. Mary’s University, in partial

fulfillment of the requirements for the degree of Master of Science in

Computer Science

Thesis Examination Committee:

__

Internal Examiner

{Full Name, Signature and Date}

__

Dean, Faculty of Informatics

{Full Name, Signature and Date}

July 24, 2024

DECLARATION
I, the undersigned, declare that this thesis work is my original work, has not been

presented for a degree in this or any other universities, and all sources of materials used

for the thesis work have been duly acknowledged.

Abel Demelash
Full Name of Student

Signature

Addis Ababa

Ethiopia

This thesis has been submitted for examination with my approval as advisor.

D.r Alembante Mulu

Full Name of Advisor

Signature

Addis Ababa

Ethiopia

July 24, 2024

 i

Acknowledgment

First of all, I thank GOD first and foremost, without whom everything will not be possible.

I would also like to thank my adviser Dr. Alembante mulu for assisting me in this thesis ,guiding

me in the right direction and giving me valuable advice and correcting me and showing me my

shortcomings in the making me this thesis.

I also want to thank the Ethiopian Agricultural Transformation Agency for providing me with

the available data that was critical to our thesis paper.

I also want to thank my family for supporting me in every possible way they could throughout

my masters education and thesis journey.

 ii

Table of Contents

Acknowledgment ... i

Table of Contents..ii

List of Acronyms...v

List of Figuresvii

List of Tables ... viii

Abstractix

1. Introduction1

1.1. Background...1

1.2. Motivations..,............2

1.3. Statement of the Problem ...2

1.4. Research Question...3

1.5. Objectives..4

1.5.1. General Objective...4

1.5.1. Specific Objective...4

1.6. Scope / Limitations..4

1.7. Significance of the study...5

1.8. Organization of the thesis...6

2. Review Of Literature .. …..7

2.1. Introduction...7

2.2. Water - Soil Dynamic In Farmlands...7

2.2.1Soil Components..8

2.2.2 Soil Chemical Properties...9

2.3. Approaches To Water Management In Irrigated Farmlands...14

2.3.1Scheduling Based Water Management In Irrigation...14

2.3.2 Smart Irrigation System Water Management...14

2.3.3 Deficit Irrigation System Water Management..15

2.3.4 Machine Learning Based Approaches...15

2.3.4.1Neural Networks..15

2.3.4.2 Activation Functions...17

2.3.4.3 Back Propagation..19

2.3.4.4 Gradient Descent...20

2.3.4.5 Model Components/Hyper Parameters...21

 iii

2.3.4.6 Optimizers...22

2.3.4.7 Loss Function..24

2.3.4.8 Multi Layered Perceptron(MLP)...26

2.3.4.9 Recurrent Neural Network (RNN)...28

2.3.5 Model Evaluation..31

2.4. Review Of Related Work..33

2.4.1Local Related Work..33

2.4.2 Global Related Work...33

3. Methodology ... 34

3.1 Introduction..34

3.2 Dataset Collection..34

3.3 Feature Selection..34

3.4 Dataset Preprocessing..35

3.4.1 Dataset Cleaning...35

3.4.2 Dataset Reduction...36

3.4.3 Dataset Normalization..38

3.5 Data Splitting...38

3.6 Hyper Parameter Tuning..38

3.7 Model Design and Development..39

3.8 Model Training..39

3.9 Evaluation Metrics...39

3.10 Proposed Model And Architecture...39

3.11 Software And Tools Used..41

4. Experiment And Results .. .44

4.1 Introduction..44

4.2 Experimental Setup..44

4.3 Multi-Layer Perceptron (Mlp)...45

4.3.1MLP Baseline Configuration..45

4.3.2 MLP Hyperparameter Tuning...46

4.3.3 MLP Analysis..49

4.4 Long Short-Term Memory (LSTM)...51

4.4.1 LSTM Baseline Configuration..51

4.4.2 LSTM Hyperparameter Tuning...52

4.4.3 LSTM Analysis...56

 iv

4.5 Gated Recurrent Unit (GRU)...57

4.5.1 GRU Baseline Configuration..57

4.5.2 GRU Hyperparameter Tuning...58

4.5.3 GRU Analysis..62

4.6 Comparative Analysis...64

5. Conclusion......66

References ... 68

Appendices ... 72

 v

List of Acronyms

 A.I Artificial Intelligence

 Al Aluminum

 B Boron

 BCM Billion Cubic Meters

 Ca Calcium

 C Carbon

 CEC Cation Exchange Capacity

 Co Cobalt

 Cu Copper

 EAIA Ethiopian agricultural transformation agency

 EC Electrical Conductivity

 ELU Exponential Linear Unit

 ET Evapotranspiration

 Fe Iron

 GRU Gated Recurrent Unit

 HP Exchangeable Acidity

 IOT Internet of Things

 Lat Latitude

 Lon Longitude

 LSTM Long Short-Term Memory

 Mg Magnesium

 Mn Manganese

 MLP Multi-Layer Perceptron

 Na Sodium

 N Nitrogen

 NGO Non-Governmental Organization

 NSIS National Soil Information System

 P Phosphorus

 PH Power Of Hydrogen

 ReLU Rectified Linear Unit

 RNN Recurrent Neural Network

 S Sulfur

 vi

 SGDM Stochastic Gradient Descent with Momentum

 SGD Stochastic Gradient Descent

 Si Silicon

 Zn Zinc

 vii

List of Figures

Figure 2.1: Soil components ... 8

Figure 2.2: Soil PH range ..10

Figure 2.3: Soil moisture in Ethiopia ..10

Figure 2.4: Loss function ...25

Figure 2.5: Mean square error ...25

Figure 2.6: Cross entropy ..26

Figure 2.7: MLP with single hidden layer ...26

Figure 2.8: RNN Architecture.. 29

Figure 2.9: Hidden State Update Formula in RNN ...29

Figure 2.10: Single Cell in LSTM ...30

Figure 2.11: Cell structure of a gated recurrent unit ...31

Figure 3.1: Data sample with missing values ..35

Figure 3.2: Number of missing values after ..36

Figure 3.3: Feature reduction ..36

Figure 3.4: Sample threshold ...37

Figure 3.5: Sample chemical properties irrigate threshold .. 37

Figure 3.6: Weighted final result ..37

Figure 3.7: Experimental architecture of our model ...40

Figure 4.1: Confusion matrix for MLP .. 50

Figure 4.2: Training and validation accuracy of attention using MLP ..51

Figure 4.3: Training and validation loss of attention using MLP ...51

Figure 4.4: Confusion matrix for LSTM ..56

Figure 4.5: Training and validation accuracy of attention using LSTM57

Figure 4.6: Training and validation loss of attention using LSTM ..57

Figure 4.7: Confusion matrix for GRU ...63

Figure 4.8: Training and validation accuracy of attention using GRU ..63

Figure 4.9: Training and validation loss of attention using GRU ..64

Figure 4.10: Accuracy Comparison of MLP, LSTM, and GRU ..65

Figure 4.11: Loss Comparison of MLP, LSTM, and GRU ..65

 viii

List of Tables

Table 2.1 : soil chemical properties optimal range..12

Table 2.2 : soil chemical properties weigh..13

Table 3.1 : hardware specifications...41

Table 4.1: MLP Baseline Configuration..46

Table 4.2: MLP Baseline Results..46

Table 4.3 : Performance result of tuning neuron size for MLP...47

Table 4.4 : Performance result of tuning number of hidden layers for MLP................................47

Table 4.5 : Performance result of tuning epoch for MLP..48

Table 4.6: Performance result of tuning batch size for MLP..48

Table 4.7: Performance result of tuning activation function for MLP..49

Table 4.8: Performance result of tuning learning rate for MLP ...49

Table 4.9: optimal hyper parameters for MLP..50

Table 4.10: LSTM Baseline Configuration...52

Table 4.11: LSTM Baseline Results..52

Table 4.12: Performance result of tuning neuron size for LSTM..53

Table 4.13: Performance result of tuning number of hidden layers for LSTM.............................53

Table 4.14: Performance result of tuning epoch for LSTM..54

Table 4.15: Performance result of tuning batch size for LSTM..54

Table 4.16: Performance result of tuning activation function for LSTM......................................55

Table 4.17: Performance result of tuning learning rate for LSTM..55

Table 4.18: optimal hyper parameters for LSTM..56

Table 4.19: GRU Baseline Configuration...58

Table 4.20: GRU Baseline Results..58

Table 4.21: Performance result of tuning neuron size for GRU..59

Table 4.22: Performance result of tuning number of hidden layers for GRU...............................59

Table 4.23: Performance result of tuning epoch for GRU...60

Table 4.24: Performance result of tuning batch size for GRU..61

Table 4.25: Performance result of tuning activation function for GRU..61

Table 4.26: Performance result of tuning learning rate for GRU..62

Table 4.27: optimal hyper parameters for GRU..62

Table 4.28: comparative analysis for MLP , LSTM and GRU..64

 ix

Abstract

Irrigation is a critical method for managing farmland resources such as water and fertilizers. In

Ethiopia, irrigation has been extensively used, and to modernize the current irrigation system in

terms of water management, I have designed a machine learning-based system that automates

water management to enhance irrigation efficiency. This study utilized soil chemical data

collected from farmlands in the Oromia Region, East Showa Zone, Adama Woreda, provided by

the Ethiopian Institute of Agricultural Transformation (EIAT). We collected a total of 90 soil

features using various preprocessing techniques to address issues that could render the data

unusable by machine learning algorithms. Additionally, thresholding and weighted sum analysis

were applied to prepare the data for water management purposes and to generalized decision-

making.

To develop our classification model for water management, we implemented three machine

learning algorithms: Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and

Gated Recurrent Unit (GRU). These algorithms are capable of handling non-linear issues present

in the data. We employed hyperparameters such as Adam optimizers and activation functions

(sigmoid, tanh, and ReLU), along with evaluation metrics including accuracy, precision, recall,

and F1 score.

By applying these parameters in combination with the three algorithms, developed machine

learning models with accuracy rates of 95.4%, 95.8%, and 94.3% for MLP, LSTM, and GRU,

respectively, after multiple training sessions using various parameter combinations. This study

demonstrates the potential of machine learning models to significantly improve water

management in irrigated farmlands, contributing to the sustainable use of water resources in

agriculture.

Keywords: Irrigation, machine learning, MLP, LSTM, GRU, optimizers, Activation Function

 1

Chapter 1

1. Introduction

1.1. Background

Irrigation is a system by which agricultural resources like water and pesticides as well as

fertilizers are applied in a systematic way , [1] it's designed to allow the needed crop production

and Sustainability in water demanding regions, and reduce the impact of drought in Semi-desert

regions or semi-wet regions. even in areas where enough rain or naturally flowing waters are in

comparison to the semi-desert is more in abundance , issues like unevenly distribution of rain,

soils inability to hold required amount of water arise therefore making traditional rain dependent

agricultural practices highly unreliable , and currently according to [1] in Ethiopia it is being

used to grow crops like Teff , wheat and other vegetation's and fruits like coffee and sugarcane ,

irrigation is the main strategy being Used by Ethiopia to transform Ethiopia's rain based

agriculture into a more sustainable and productive agricultural development system [1] which

will increase the amount of food being produced ,according to [12] the economic development of

the farmers as well as the country economy in overall and decrease water loss of farmlands by up

to 28% , and currently less than 3% of farm lands in Ethiopia use irrigation system most being

government owned with foreign NGO partners irrigation's, and the annual water usage of

irrigated farmlands in Ethiopia is estimated at 1.5 BCM , There are three types of irrigation

methods used in Ethiopia those are gravity method ,drip and sprinkle system ,With Sprinkle

System assisted irrigation human made rain that is limited to the irrigation region is created. the

water is passed through Pipe System in which it is put under high pressure, the spraying is

applied using Several Sprinkles heads that are automatically rotating, the system also has major

components like pumping stations conveyance system , distribution system and drainage system,

and control system including soil moisture sensors, solar irradiance detectors, temperature and

atmospheric humidity measurements and a manual or computer to operate a valve and pump

system.

In the near future [12] the Increased demand in food production and the climate change will lead

to modernized irrigation and water management systems to be developed , and one currently

being used and studied in the developing world like India [28] is Artificial intelligence or

machine learning based irrigation management system ,which is being used to manage the water

flow into the farmlands crops , the health of crops and fertilizer usage, even though this system is

being used in other developing countries like India to feed it’s high populations , and currently in

 2

Ethiopia which has an estimated population of 120 million people it’s not being utilized to

advance the current irrigation system which we believe is an opportunity being wasted.

1.2. Motivations

In Ethiopia where farming is the main source of food as well as economic income for over 80%

of the population and also Ethiopia being located in east Africa an area which is currently being

affected by extreme drought due to climate change which makes it impossible to farm due to

shortage of ground water , shortage of rain fall and lack of fertilizers as well as lack of highly

skilled and motivated labor force , and with a population of 120 million which is a lot of mouth

to feed let alone export crop products to the foreign market. Water management in agriculture is

a critical concern, particularly in regions with limited water resources. Efficient irrigation

practices are essential to ensure sustainable crop production and conserve water. The motivation

behind this research stems from the pressing need to enhance water management strategies in

irrigated farmlands through the use of advanced technologies. Traditional methods of water

management, which often rely on manual monitoring and expert judgment, are not only labor-

intensive but also prone to inaccuracies. With the advent of machine learning, there is an

unprecedented opportunity to revolutionize agricultural practices by developing predictive

models that can optimize irrigation schedules based on real-time soil data. This research aims to

harness the power of machine learning to provide farmers with precise, data-driven insights,

ultimately leading to improved water use efficiency, higher crop yields, and sustainable

agricultural practices.

1.3. Statement of the Problem

Efficient water management in irrigated farmlands is a complex challenge, particularly in

developing regions where resources are scarce, and agricultural practices are crucial for

livelihoods. The traditional methods of determining irrigation needs are often inadequate,

leading to either over-irrigation, which wastes precious water resources, or under-irrigation,

which hampers crop productivity. The lack of precise, real-time data further exacerbates this

issue, making it difficult for farmers to make informed decisions. This research addresses the

critical problem of how to accurately predict irrigation needs using machine learning algorithms,

based on the analysis of soil chemical properties. By developing a predictive model with high

accuracy, this study aims to provide a viable solution to optimize water usage, reduce wastage,

and enhance agricultural productivity. Although according to [12] irrigation system is very

 3

effective In Ethiopia compared to conventional way of farming it still has its drawbacks

compared to the goal and the resource investment the country is putting in and the return

investment its getting, some of this include high level power usage for its pump stations , less

productive crops both In terms of quality and quantity , excessive water usage of about 30 – 35%

which also Adds to environmental pollution by transferring dissolved salt and pesticides remains

into the nearby supply of water which affects the irrigated farmlands as well as its surrounding

area, the environment and communities that live in the area. And overall according to the current

system we believe these issues are as a result of absence of Artificial Intelligence based

automation in the Ethiopia's irrigation system by comparing it to other fully or partially

automated irrigation systems in counties like India in relation to ours , as India was in the same

situation with their irrigation system and they were able to overcome them by integrating Their

irrigation system with Artificial Intelligence based solutions to increase their productivity and

decrease their wastage of resources like water and fertilizers. Which i believe we can implement

in our countries irrigation fields as well with similar effect.

1.4. Research Question

I believe I will be able to answer these questions with our research:.

 What is the relationship between various soil chemical properties and water content in

irrigated farmlands?

 How effective are AI-based predictive models in managing water resources compared to

human expert-based methods?

 How accurately can machine learning models (MLP, LSTM, and GRU) predict the irrigation

water needs of farmlands based on soil chemical data?

 How do the accuracies of MLP, LSTM, and GRU models compare to traditional models like

kNN and SVM?

 How can hyperparameter tuning improve the performance of MLP, LSTM, and GRU

models in predicting irrigation needs?

 How does the size and complexity of the dataset affect the accuracy and reliability of the

predictive models?

 4

1.5. Objectives

1.5.1. General Objective

The general objective of this research is to develop a robust and accurate predictive model for

water management in irrigated farmlands using advanced machine learning algorithms. By

analyzing a set of soil chemical data obtained from governmental institutes, the research aims to

uncover the relationships between various soil properties and water content. This understanding

will facilitate the creation of models that utilize algorithms such as Multi-Layer Perceptron

(MLP), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) to determine the

irrigation needs of soil with high precision. The research also seeks to demonstrate the

superiority of AI-based models over traditional methods in conserving water resources while

maintaining crop productivity. Paving the way for future improvements in predictive accuracy

and model scalability. Ultimately, the goal is to provide a sustainable and efficient solution for

water resource management in agriculture, leveraging the power of AI to address the challenges

posed by water scarcity and the need for optimized irrigation practices.

1.5.2. Specific Objective

 To review state of the art literature on Artificial Intelligence Based Irrigation agricultural

technologies.

 To prepare required Data Set for Agricultural Irrigation Water Management

 To better understand the science and understanding of the features (Chemical properties of

soil in relation to water management in a farming environment) that affect the agricultural

industry.

 To Design a Deep Learning Model for our Agricultural environment that is enhanced using

irrigation technology.

 To measure the performance of my model.

1.6. Scope/Limitations

Scope

The scope of this research encompasses the development and evaluation of a machine learning-

based model for water management in irrigated farmlands. The study involves collecting and

analyzing soil chemical data from governmental institutes to understand the relationship between

soil properties and water content. It explores the application of several machine learning

 5

algorithms, including Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and

Gated Recurrent Unit (GRU), to predict the irrigation needs of soil. The research includes the

preprocessing of soil data, hyperparameter tuning, and the assessment of model performance in

terms of accuracy. Additionally, the study compares the proposed models with existing

traditional methods and other machine learning algorithms to highlight their effectiveness.

Limitations

In this research, several limitations are found. Firstly, the accuracy of the predictive model is

highly dependent on the quality and quantity of the soil chemical data available. Limited or

incomplete datasets can affect the model's performance. Secondly, while the research

demonstrates the effectiveness of deep learning-based models, their implementation in real-

world scenarios requires significant technological infrastructure, including IoT devices and

reliable internet connectivity, which may not be readily available in all regions. Thirdly, the

study focuses on specific machine learning algorithms (MLP, LSTM, and GRU), and while these

have shown high accuracy, there may be other algorithms or combinations thereof that could

yield even better results. Finally, the model's predictions need to be validated through extensive

field testing, which is beyond the current scope and resources of my research scope. Future work

should address these limitations by scaling up data collection efforts, exploring additional

algorithms, and conducting real-time field testing to prove the practical applicability and

reliability of our model.

1.7. Significance of the Study

We hope the AI based model being developing for the irrigation system based farmlands will be

implemented in future irrigation projects, and we believe the effects of this system will help:

 Farmers have more crop yield and more profitability.

 Farmers will have to spend less on fertilizers and other resources due to less water

pollution.

 Customers get high in quantity and quality crop products and with fewer prices.

 Irrigation dams have better full to semi-automated system to manage water which will

increase their overall performance and decrease water loss.

 Government will have advanced Agricultural industry that helps the country to better

advance the economy

 6

 As researchers I will gain knowledge about research on deep learning concepts and how

to implement this research on practical issues with real data.

1.8. Organization of the Thesis

Our thesis is organized by chapters which include, first chapter titled introduction ,in this part we

discuss about the general understanding of the problem we-are trying to solve, the objective we

are trying to achieve, scope of our research , significance and limitations of the study , and in the

second chapter we perform literature review of previous works to understand the processes ,

approaches and related works in the third chapter methodology we discuss about data collecting

and data analysis / preprocessing methods , and about the machine learning algorithm we will

implement , and how we implement them and the software and hardware tools we use during our

experiment , and in the fourth chapter experiment we discuss about our experiment including

how we set up our experiments and the results of our experiments and in the fifth chapter

conclusion we conclude our research with some recommendations.

 7

Chapter 2

2. Literature Review

2.1 Introduction

In this chapter we discuss the basic theories and Current Understand to The nature of irrigated

water management to make an analysis and future predictions using machine Learning

Algorithms, we perform review of early literature's on the Subject matter of the nature of

Irrigation, techniques and methods used to manage the natural resources and the science behind

the natural relations between water as a resource in Soil, and the machine learning based

techniques which can help us achieve advance the resource management on irrigation

environment to help us achieve an advanced Way of managing water consumption in Irrigation

and maximize productivity as a result.

2.2 Water - Soil Dynamic In Farmlands

water is a very scarce resource in a farming environment both in an irrigated and non-irrigated

,which is why it needs to be managed in irrigation which is why it needs to be managed properly

and [12] thanks to the modern technology we have we can manage water intake of crop fields

using different technologies , methods and devices like soils sensors ,weather satellites and many

more, and irrigation systems need highly advanced supportive systems to help management of

resources like water and other resources like fertilizers and labor to save cost.

Agriculture Is the most water demanding sector, [5] taking 2/3 of the water from area found, as

the world proportion is expected to increase by at least 30%. this In Conjunction with the current

climate crisis spreading in Sub-Sahara areas that is causing droughts leading to crop failure and

lives stock deaths in greater numbers causing farmers to Suffer, which impacts people starting

from farmers immediate families to the local community that is dependent on the farming

ecosystem. and the lack of innovating solutions exacerbates the situation even more. according

to [5]Ethiopia has currently over 2.7 million hector Irrigated field, which Is a total of 20% of

what the countries potential land that can be irrigated for farmland use; where over 97% of the

irrigation method is surface irrigation. Maze as being the primary crop being grown in the region,

maze is sensitive to water volume it receives, current irrigation methods include deficit irrigation

and different furrow irrigation methods.

 8

2.2.1 Soil Components

Soil is a composite of minerals, organic substances, gases, liquids, and numerous organisms, all

of which collectively sustain plant life. It forms a natural entity within the pedosphere and fulfills

four crucial roles: acting as a medium for plant growth, serving as a system for water storage,

supply, and purification, modifying the atmosphere, and providing a habitat for organisms

involved in the decomposition of organic matter and the formation of new habitats.

Figure 2.1 : soil components

soil is composed of [2] different minerals , and also [3] organics matters which are necessary in

managing the soil prolificacy and also minimizing the loss of nutrients, water and air ,the

composition of this components affect the physical properties of the soil we analyze. in order to

analyze these properties in the soil [12][13] we use soil sensors which are devices we embed

inside soil in an irrigated farmland to detect and report properties of soil(temperature ,PH,

moisture and humidity and more) in an analog signal which then will be converted to digital

signal with a specific value and be stored in a remote database like cloud services or local

databases on local machines.

The other element found inside soil is water, it encompasses between 2 - 50% in volume, it

helps by moving nutrients to the plants helping , their overall growth, and the soil organisms

included, and helping in the process of , both biological as well as chemical decomposition. the

idea of soil water availability in the extent to which the soil can hold a Certain amount of water

which later will be available to the plants to Use, this Character of the soil is dictated mainly by

the texture of the soil, where the condition where there is more small particles are found in The

 9

soil, the ability for the soil to hold make water increases the type of Soil with this condition

called clay soil, where the opposite characteristics is displayed in soil called sand soils. Other

influences that affect the soil’s capacity of holding water is called organic matter, where the

more excess presence of organic matter in the soil is the indication of the higher chance of the

soils ability to hold more water.

Air is another element found in soil, occupying same Volume as water due to air ability to

occupy same volume of water (2-50%), its presence in soil is important for both root and

microbe respiration, supporting growth of the plant, other gases like carbon dioxide and nitrogen

are vital for below ground plant functions like in nitrogen case , nitrogen-fixing bacteria and

where for the case of carbon dioxide, as the level of carbon dioxide increase is determined by the

depth of the Soil, because of decomposition of the organic matter it accumulated and the

available amount of plant roots.

2.2.2 Soil Chemical Properties

soil temperature [13] is a property in a soil that is essential for many soil processes and reaction

that include water and nutrient uptakes, soil temperature properties change by the radiant,

thermal and latent energy exchange processes that take place in the soil, components of soil

thermal properties such as specific heat capacity are affected by the water content of the soil, the

flow of water and heat is an interactive process. where temperature gradients affect the moisture

level of the soil , soil temperature vary due to the constant change in climate and meteorological

change and the interactions of soil and atmosphere ,some of the factors that affect temperature in

a soil are changes in weather, landscape , regional differences ,crop type and soil management

processes.

PH according to [3] value is measurement of the hydrogen ion concentration where it is the

range of between (1-14), where it is a reverse scale in that a very acidic soil has a low PH and

high hydration ion concentration , therefore at high (alkaline) PH values , the hydration ion

concentration is low , most soils have a PH value between (3.5 - 10) , in higher rain fall areas the

natural PH of soil typically range from (5-7) , while in dry land areas the range is (6.5 - 9).

 10

Figure 2.2 : soil PH range

soil moisture [2] is the amount of water found inside an active layer of the soil , it’s the

source of water that evaporates from the soil and crops into the atmosphere ,the water

content of the soil is a vital element in the hydro-logical cycle and crop growth ,

quantification of soil moisture , valuable for understanding water resource management. In

soil moisture analysis soil water content is expressed as percentage of the water by weight ,

volume or in other measurements as inches of water per inches of soil, and the values we

get from this units of measurement will be categorized into categories like start irrigation

where irrigation should started to complete most irrigation cycle before unwanted stress

occurs in the irrigation , where we believe we will get to an optimum range which is a state

in the soils moisture range in which crop high stress is decreased and it is required to

manage soil moisture in the range of these readings.

Figure 2.3 : soil moisture in Ethiopia

 11

Humidity in a soil is [2] the most important factor for plant growth , which refers to the amount

of water in the soil , by measuring how moisture wet the soil is.

The relationship between soil chemical properties and water availability is complex and

multifaceted, [3] as each element plays a unique role in soil chemistry and plant health. Key

nutrients like Potassium (K), Calcium (Ca), Magnesium (Mg), and Phosphorus (P) are crucial for

water regulation and uptake efficiency in plants. Potassium enhances water use efficiency and

drought resistance, while Calcium improves soil structure, facilitating better water infiltration

and retention. Magnesium, a central element of chlorophyll, influences soil structure and water

holding capacity, and Phosphorus is essential for root development and energy transfer,

impacting water uptake. Other elements, such as Iron (Fe), Manganese (Mn), Zinc (Zn), Boron

(B), and Copper (Cu), though required in smaller amounts, also significantly affect water uptake

by participating in enzyme functions, photosynthesis, and nutrient transport. The soil pH

(Hydrogen Potential) is another critical factor, as it affects nutrient availability and microbial

activity, thereby influencing water retention and availability.

Soil structure and organic matter content, represented by [29][30] Carbon (C) and Cation

Exchange Capacity (CEC), are fundamental for determining water holding capacity of soil ,

where the optimal range of the element Carbon are in the range of (1 - 3%) as an implicit way of

telling soils healthy water level . High organic matter improves the soils structure, enhancing

water retention. The CEC indicates the soil’s ability to hold and exchange nutrients with the

CEC being in an optimal range of (10 - 40 Cmolc/kg) showing a healthy amount of presence of

hydration, directly impacting water availability to plants. Electrical Conductivity (EC) (optimal

range of less than 2dS/m) and Sodium (Na) (optimal range of having larger than 50 ppm to

avoid salinity issues)levels are [31][32]indicators of soil salinity, with high values often leading

to poor soil structure and reduced water infiltration. Elements like Aluminum (Al) and Cobalt

(Co), while essential in trace amounts, can be detrimental in higher concentrations, affecting root

growth and water uptake where [33][34] their optimal values for both elements ranges larger

than 0.2 ppm and a range of between 0.1ppm and 0.02 ppm respectively. The intricate balance of

these chemical properties defines the soil's ability to retain and provide water to plants, crucial

for maintaining soil health and agricultural productivity.

The weighted influence of soil chemical properties on water availability involves quantifying the

impact of each element on the soil's capacity to retain and supply water to plants. Potassium (K)

and Calcium (Ca) also have significant weights [35][36] due to their crucial roles in enhancing

water use efficiency and improving soil structure,100 - 300 ppm and 400 - 2000 ppm in optimal

 12

ranges respectively. Magnesium (Mg), [37] being central to chlorophyll and indirectly affecting

soil structure and water retention with an optimal range of 50 -100 ppm, also holds substantial

weight. Phosphorus (P), essential for root development and energy transfer, is [38] weighted for

its impact on water uptake where its ranged for its optimal condition of water availability of 10 -

100 ppm. Trace elements like Iron (Fe), Manganese (Mn), Zinc (Zn), Boron (B), and Copper

(Cu), though required in smaller quantities, are weighted for their roles in enzyme functions,

photosynthesis, and nutrient transport, all of which influence water uptake efficiency where each

are measured also to have[39][36][40][41][42] a range of indicators for showing water

availability with optimal ranges of (4.5 -10ppm) , (20-100ppm) ,(1.0-5.0ppm) ,(0.5-2.0ppm) ,

and (0.2-1.5ppm) respectively each.

Chemical Elements Optimal Range

PH 6.0 - 7.5

P 10 - 60 ppm

K 100 - 300 ppm

Ca 400 - 2000 ppm

Mg 50 - 200 ppm

Mn 20 - 100 ppm

S 10 -30 ppm

CU 0.2 - 1.5 ppm

B 0.5 - 2.0 ppm

Zn 1.0 - 5.0 ppm

Na > 50 ppm

C 1.0 - 5.0 ppm

N 1.0 - 4.0 ppm

Fe 4.5 - 10 ppm

Al > 0.2 ppm

Si 50 - 150 mg/kg

Co 0.02 - 0.1 ppm

Mo 0.02 - 0.2 pm

ec > 2dS/m

cec 10 - 40 Cmolc/kg

 13

Table 2.1 : soil chemical properties optimal range

Soil pH (Hydrogen Potential) is [43] heavily weighted as it affects nutrient availability and

microbial activity, crucial for water retention. The soil's organic matter content, represented by

Carbon (C), is [29]weighted for its significant impact on soil structure and water holding

capacity. Cation Exchange Capacity (CEC) is [30] another heavily weighted factor, indicating

the soil’s ability to hold and exchange nutrients, directly affecting water availability. Electrical

Conductivity (EC) and Sodium (Na) levels are weighted[31][32] for their roles in indicating soil

salinity, with high values reducing water infiltration. Elements like Aluminum (Al) and Cobalt

(Co), although necessary in trace amounts, are [33][34]weighted for their potential negative

impact on root growth and water uptake at higher concentrations. The weighted values of these

chemical properties are critical for understanding their collective influence on soil water

dynamics and ensuring optimal soil health and agricultural productivity.

Chemical Properties Weight

PH 1.5

P 1.2

K 1.3

Ca 1.1

Mg 1.1

Mn 1.0

S 1.0

CU 0.9

B 0.9

Zn 1.0

Na 1.3

C 1.4

N 1.2

Fe 1.0

Al 1.2

Si 0.8

Co 0.8

Mo 0.9

 14

ec 1.3

cec 1.4

Table 2.2 : soil chemical properties weight [36][37][38][39][40][41][42][44][45][46][47][48]

2.3 Approaches to Water Management in Irrigated Farmlands

Water management in irrigated farmlands involves [4][5] a variety of approaches and techniques

aimed at optimizing water use efficiency, enhancing crop yields, and ensuring sustainable

agricultural practices. Here are some of the key approaches:

2.3.1 Scheduling Based Water Management in Irrigation

Decision made in irrigation like when to irritate in terms of season and Where to irritate in terms

of water deprived locations when the water in land is production critical. The decision is based

on Considering the Seasons. Farmers also need to decide when the water at hand will be used

and the type of crop to plant also . [11] unreliable rainfall pattern further makes making

decisions hard to make. irrigation Scheduling techniques be applied to resolve This issues to a

certain level of success.

Demand for conservational management of water resources on irrigation farmland with irrigation

efficiency & Crop productivity & Soil health led to the development of Irrigation Scheduling

mechanism, as described by [4] irrigation Scheduling in way of planing and decision making that

irrigation operators apply to manage flow of water & other resources from dams to the farmlands.

The decision making of scheduling is based on set of model like soil -water balance model , soil

water tension, leaf water Content and entropy temperature ,Irrigation Scheduling requires

requires lots of complimentary data to make the decision to determine when and how much

water to apply to meet the objective

2.3.2 Smart Irrigation System Water Management

Smart irrigation is currently in use technology based Irrigation management system where

technologies [4][12] Such as sensors and micro controllers are used, Sensors are devises used to

collect analog stream of raw data’s where they could collect moisture levels , temperature and

PH level , as well as other chemical properties of the Soil the sensors are placed at, and this

streams of data are collected [14] using micro controllers like Arduino and raspberry pi, these

 15

micro controllers are connected to a storage source that are either found locally or remotely,

where the irrigation controllers can access them and make experts based analysis & decision

making system In order to manage resources like water , fertilizers and other resources.

Smart Irrigation Systems Can help [6] [12] countries that are less developed with less resource

and poor resource management and high population resulting in high demand of crop production

smart Irrigation's help by efficiently Utilizing their usage of their water resource in agriculture,

by auto managing their water reserve, distribution and consumption of various levels, avoid

over-irrigation and under irrigation problems

2.3.3 Deficit Irrigation System Water Management

Deficit Irrigation is according to [6] is a technique used in irrigation to manage water usage in

farmlands . where it tries to minimize water consumption, by exposing the crop to a certain

Level of water stress, either in an interval period or through out the growth process, with an

expectation of any yield reduction will be compensated by increased production from the

additional irrigated area with the water Save by difficult irrigation. Deficit irrigation is the

application of less water than is required for potential ET and maximum yield.

2.3.4 Machine Learning Based Approaches

2.3.4.1 Neural Networks

A neural network is a methodology in artificial intelligence field derived by connecting neurons

into a layered structure. In computer science, a neural network is a mathematical model with

multiple set of parameters, this neural network technique is based on [19] the human brains

neural system and the neural networks try to imitate this natural process of our human brain. The

model consists of multiple functions, neural network algorithms which are supported by

mathematical equations.

A Neural network is a technique used to process set of data’s given to us to get a needed result

based on our models purpose ,neurons are the fundamental building block of the artificial neural

networks architecture ,each neuron in neural network is layered in a column , and three distinct

parts namely ,the input layer ,the output layer ,and the hidden layers , where each neuron is

interconnected between layers , where [21] each neuron takes input value and from previous

neuron (except the input layer) and passes output to the next neuron , in the input and output

 16

layers we only have single columns each , but for the hidden layer we can have between zero

(adaline network) , one (madaline network) ,or multiple columns of neurons.

Input layer

The primary layer we find in our neural architecture is called the input layer , the input layer is

where the data is first fed to the network it serves as an entrance for our data features , it’s main

objective is to accept and analyze the input data’s before passing them to the next layers (hidden

layer) of neural networks for further analysis.

The input layer serves as the link between the input data and our neural network (the hidden and

output layers) , taking multiple forms of input datas like textual , numerical (integer or floating

or binary for categorical data’s)like in our case of data we collected , and images and passing

them to the hidden layer , the input layer is composed of standalone node also called neuron , the

number of these neurons is set equal to the number of input features in the given data set , each

node (neuron) in the input layer is a representation of a single input from our data set , and are

fully connected to the hidden layers nodes with each being assigned a weighted values ,this layer

also formats the input data into a format which makes the data more suitable to be processed by

the neural network we are using by scaling the input data into a range between [0 and 1]

(normalization) or by scaling them zero mean and standard variance (standardization) , usually

activation function functions are not applied on this layer , as there being no preprocessing being

done on the neurons of this layer.

Hidden layers

neural networks main part is the hidden layer which is located between the input layer and the

output layers ,this layer is built using layered sets of nodes(neurons) which are connected with

both the input layers nodes as well as the output layer nodes fully in a feed forward fashion, this

layer receives set of data’s from the input layer and transforms them into a meaningful data the

next layer can use ,it solves non-linear problems between the given input and the expected output

by calculating the activation function where the weights of the neurons are multiplied by the

given input of the previous layer plus the bias . and this results are passed to the next layer as

inputs.

The activation function in the hidden layer allow [21] for it to solve non-linear problems and

learn more complex patterns, while training this layers to have maximum success we adjust the

weights as well as biases of this neurons using the back propagation algorithm which implements

an optimization of gradient decent with a goal of minimizing loss function.

 17

Output layer

The final layer in neural network is named output layer where the nodes receive out puts of the

hidden layer and give an out put to a varying degree of either predictive or classification , this

layers architecture ,activation function as well as back propagation, and the way we interprate

the out put this layer gives depends on the nature of the task given. for classification task in this

layer we use the sigmoid logistic activation function , and assigned only a single neuron pointing

the probability of belonging to a positive class , and a loss function called the binary cross-

entropy loss is used .for multi-class classification task the output layer uses the softmax

activation function , and architecturally it’s assigned as same number as the number of classes

,and a loss function called categorical cross-entropy loss is applied.

2.3.4.2 Activation Functions

In artificial neural networks activation functions are very important as they help in [21] learning,

non linear and complicated mappings between inputs and output. Neural networks accuracy is

mainly dependent on set of situations like number of layers as well as the activation functions

used ,for the accuracy to be as high as possible the neural networks need to be at made up of at

least 2 layers (the hidden layer and output layer) with a combination of any activation function.

if activation function is not applied in our neural network the output we get will be a linear

function , limiting us from doing complex and detailed mapping from our data sets ,when our

data is very complex and require a non-linear function because of its non-linear property , hence

we use activation function that are non-linear where we are abeld to use in our hidden layer a

complex neural architecture in conjunction to make an analysis and understand and make

predictions based on our data sets that has a non-linear in property.

Neural networks prediction accuracy is defined by the type of activation we select, which are

[21] mostly non-linear activation functions ,in real world situation errors have a non-linear

properties ,hence we are required to use non-linear activation functions to address the non-

linearity of the data ,and to achieve that we assign each nodes that are interconnected nodes an

activation function. Neural networks therefore need activation functions to be abeld to analyze

complex information and represent non-linear convoluted random functional mapping between

input and output layers, hence applying non-linearity to the network using non-linear activation

function, we can map non-linearity from the input layer and passing through the hidden layer to

the output layer using this functions.

 18

Sigmoid Activation Function

Sigmoid is an activation function mostly used by neural networks that are trying to solve non-

linear problems ,where it takes real values as inputs and transforms them into values of 0 and 1

as outputs , Sigmoid is used in models where the model has to predict probabilities as an output.

Tanh Activation Function

The Tanh activation function, or hyperbolic tangent, is activation function that maps input values

into a range between [-1 and 1] , it’s a function that is zero-centered, making it advantageous for

certain neural network architectures, as it can lead to faster convergence compared to the

Sigmoid function. Its output is more balanced between positive and negative values.

ReLU (rectified linear unit) Activation Function

ReLU activation function [7] is widely used popular function , where it’s used in complex

neural networks, with a range of from 0 to infinity, its major advantage over others is does not

need for every neurons to be activated all by the same time , and activation only happening when

the output of the linear transformation is zero, ReLU is computationally efficient and helps to

mitigate the vanishing gradient problem. However, it can encounter the "dying ReLU" issue

where neurons become inactive if they constantly output zero.

maxout Activation Function

The Maxout function is a type of function where we generalize the ReLU and leaky ReLU

functions. It selects the maximum value from a set of inputs, . This technique allows the network

to learn both unimodal and multimodal functions, providing greater flexibility. Maxout is

particularly beneficial in mitigating the dying ReLU problem and can lead to improved

performance. However, it requires more parameters, which can increase computational

complexity and the risk of over fitting if we do not manage it properly.

ELU(Exponential Linear Unit)

The ELU activation function, is a function that aims to improve learning by addressing issues

present in ReLU. Unlike ReLU, ELU has negative values which help push mean activations

closer to zero, thus speeding up learning. ELUs also reduce the vanishing gradient problem by

having non-zero gradients for negative inputs. Their smooth curve can lead to improved

 19

performance in deep neural networks, though they are computationally more expensive than

ReLU.

Softmax Activation Function

The Softmax activation function is primarily used in the output layer of classification networks.

It converts a vector of values into a probability distribution, where the probabilities of all

possible outcomes sum to one. it highlights the most likely class by amplifying the largest input

value. Softmax is essential for multi-class classification problems, enabling the network to assign

a probability to each class. It provides a clear interpretation of model predictions but can be

sensitive to outliers and extreme values in the input.softmax converts real vector to vector of

categorical probabilities , where the elements of the output vector are in the range (0 , 1) and sum

to 1. each vector gets handled differently.

2.3.4.3 Back Propagation

Back propagation is algorithm, which was introduced by Rumelhart and McClelland in

1986, it is employed in layered feed-forward neural networks. In these networks, artificial

neurons are structured in layers, transmitting their signals forward, while errors are

propagated backward. Neurons in the input layer receive the inputs, and the output layer

provides the network's results. There can be one or multiple hidden layers.

Back propagation utilizes supervised learning, which involves providing the algorithm with

input-output pairs that the network should learn to compute. The error, or the difference

between the actual and expected outputs, is then calculated. The primary goal of the back

propagation algorithm is [21] to minimize this error, enabling the neural network to learn

from the training data. Training begins with random weights, which are adjusted iteratively

to minimize the error as much as possible.

In neural networks utilizing the back propagation algorithm, the activation function of the

neurons is typically a weighted sum, where the inputs (x) are multiplied by their respective

weights (w) and summed.

The more the Complexity of a neural networks becomes, where its learning ability

Increases requiring a fitting powerful learning algorithm like the back propagation

algorithm, back propagation algorithm in used in real world to train neural networks.

For a neural network process, where the input layer is fed with sample and the sample is

passed through each layer, where final result in given by the output layer, then the final

output error is calculated and propagated back to the hidden layer so we can adjust the

 20

values of the weights and thresholds this process is repeated by the back propagation

algorithm until the required minimal training error value is reached.

we apply two type of back propagation algorithms, where each are tailored for different

conditions in the training neural network, Standard BP algorithm it updates parameters of

the neural network repeatedly Compared to the accumulated BP algorithm since each

update uses a Single Sample, but the accumulated BP algorithm Back propagates less

frequently Since its updates once after a full scene of the training set is complete.

Bp algorithms face over-fitting issues where the training error decreases but the testing

error increases, to solve this issues we use strategies like, early stoppage, where we divide

our input data into training section and testing section and we use the the training to

compute the gradient which in turn use to update the weight , threshold ,and the testing to

calculate the error , here we look for the condition where the train error is decreasing but

the testing error increases, we stop the process & joyce the parameter where the training

error in the lowest. The other method is called regularization, where we add regularization

term of making a tradeoff between the empirical error and the Complexity of neural

network.

2.3.4.4 Gradient Descent

Gradient decent is [8] an iterative optimization algorithm, which minimizes loss Function of a

training model, by adjusting its weight of bias, it achieves the models maximum accuracy by [21]

moving throughout the model iteratively, in a direction that decreases the cost function , where it

finally converges to a local minimum, by estimating the gradient of the cost function with

relation to the models parameters, which are updated in the opposite direction to the gradient

estimate found by the algorithm , one of the parameters it manipulates to achieve the lowest loss

function is the weight of the neurons, it starts by initializing there weight But after the prediction

is made in the output layer, if the loss function is higher while Comparing the result with the

actual output, it calculate gradient of the loss, and adjust the initialized weights iteratively until

the lowest low function is reached.

Gradient computation using the chain rule.

BP algorithm uses Gradient decent to update its neural network parameters by applying this

chain rule, we calculate the gradient loss function , and then We use their gradients to update the

 21

parameters of the neural network. Using optimization techniques, this process is carried

repeatedly through out the training of the model.

2.3.4.5 Model Components/Hyper Parameters

Hyper parameter tuning.

the performance of the model we are trying to build a perfect is based on [17] the configuration

of our neural networks parameters, which we constantly have to tune to get a better accuracy the

parameters we tune include ,the size and number of our hidden layers , activation function ,

learning rate , batch size , number of epochs and regularization.

Hyper parameter play a major role in training a neural network model , where each parameter

differ in terms of impacting he models accuracy, according to [7] Hyperparameters refer to

parameters that remain fixed during the training of a machine learning model. They play a

crucial role in defining the model's structure, such as the number of hidden layers and the choice

of activation function, and in influencing the efficiency and accuracy of the training process,

therefore making our selection of those parameters both in training as well as testing phase of

the model very crucial, those parameters that greatly impact this include the optimizer batch size

,learning rate and network structure , and hyper parameter like the number of neurons and width

of a hidden layers greatly influence the learning capacity as well as complexity of our model ,

making tuning of these parameters very crucial for the overall performance of the model we are

creating.

Learning rate

learning rate is hyper parameter that manages how the values of neural networks weights are

adjusted in the training phase in a way that leads the model in the opposite direction of the loss

function, it adjusts the models to small positive value in the range of [0.0 - 1.0] , it determines

the speed our model is being trained, given the set of resources which include the number and

width of our hidden layer and the epochs numbers.

the learning rate [7] determines the weight of each node based on loss gradient. an efficient

learning rate is the the one that low enough so that convergence is possible , but also high

enough so we can train our model enough times , small learning rate leads to more epochs ,

while larger rate lead to further changes , but may lead to sub-optimal final weights.

Number Of Hidden Layers And Number Of Neurons Per Layer

 22

Number of hidden layer and the number of neurons in each of the hidden layers is one of the

hyper parameters that require tuning , [7] due to it’s high impact on the accuracy of our model.

the number of hidden layers is greatly dependent on the complexity of the problem we are trying

to solve or the level of non- linearity. as the Complexity increases the number of layers also

increases from Shallow network to deep network.

we can tune the number of layers by gradually going from Simpler design to more complex one,

at least the performance of each using Validation matrix , The number of of neuron in hidden

layers affect how the neural networks lean successfully, therefore tuning these parameters in

essential part of the neural network training process, since there are no general governing rules

for this Parameter, but there are some to suggestions We can apply Like, size of all neurons In

the hidden layer should be in between the input layer and output layer we can use rules like this

as a starting point and go from here based on the accuracy & success of our model , throughout

this process over fitting is an issue we face as our layers complexity increases we can use

techniques such as dropout or regularization to avoid over fitting.

Batch Size And Number Of Epochs.

Epochs and batch size dictate [21] how data is utilized during network training. The dataset is

divided into training, validation, and test sets. Training data is used to adjust the neural network's

weights and biases. This data is further divided into smaller batches, and for most optimizers,

network weights are updated after processing each batch. Specifically, Adam optimizers adjust

weights and biases post batch processing, while regular gradient descent updates weights either

after processing each training sample or after the entire training set, making batch size irrelevant

in this case. An epoch is defined as one complete pass of all batches, and therefore all training

samples, through the network. After each epoch, the network's performance is assessed using the

validation set by calculating the loss, which, while not used for weight updates, is crucial for

evaluating the network's generalization to new data. This process of training on the same

samples and validating with the validation set is repeated for a set number of epochs.

2.3.4.6 Optimizers

One of the most Challenges in neural network is achieving maximum accuracy, but these

requires valuable time Consumption , this can be Solved using optimization algorithms, it's an

algorithm that can be used in different neural networks, by optimizing their loss function ,

optimization algorithms are techniques used by neural networks to build models, where they help

 23

the model reach minimal cost function, by [21] adjusting its parameters to reach maximum

accuracy level.

Optimization algorithm we choose for our neural network, determines the learning speed and

performance, but the only way we can choose the best optimization is to do a detailed analysis of

each technique and tailor them to our specific model , parameters , and datasets.

SGD

SGD is an optimization technique , that is used when we have large dataset, it works by only

selecting single Sample size to update parameters and it does this frequently , and due to SGD’s

highly frequent parameter update convergence will happen faster.

Momentum

Momentum is an optimization technique for gradient descent that incorporates a portion of the

previous update vector into the current update vector, thereby accelerating the learning process.

This method smoothes out updates to model parameters, helping the optimizer maintain its

direction from earlier iterations, which reduces oscillations and increases convergence speed.

More precisely, momentum can be described as the exponentially weighted moving average of

past gradients. Rather than updating parameters based solely on the current gradient, the

optimizer uses this moving average, which acts as a memory, enabling the optimizer to retain

and follow its previous direction even if the current gradient suggests a different path.

momentum is a strong optimization technique, that helps Speed up convergence, Minimize

ossilation, avoid local minima, and make the optimization process more resistant to noisy

gradients, it's usually coupled with other optimization technique like SGD and adaptive learning

rate , and to get the best accuracy result for the model we are building, it's essential to adjust the

parameters of our momentum , so that the momentum coefficient end the learning rate.

SGD with Momentum

SGD with momentum is a commonly used optimization technique, where it converges an

quickly as SGD for Smooth objectives and benefits from an multistage Strategy with dynamic

parameters. SGDM (Stochastic Gradient Descent with Momentum) is commonly utilized with

diverse parameter configurations aimed at optimizing training efficiency. One prevalent strategy

is known as "Constant and Drop," where a consistent step size is maintained initially and then

reduced by a constant factor to facilitate fine-tuned training. Throughout this process, the

momentum weight remains either constant or gradually increases, contributing to improved

convergence and stability in the optimization process , SGDM is applied to train their large Scale

 24

neural networks and with appropriate parameter tuning we were able to achieve Superior

performances. As we approach the minimum, our aim is to achieve a gradual convergence.

However, prior to reaching this point, employing a very low learning rate could significantly

prolong the process of reaching the minimum. Conversely, using learning rates that are too small

to prevent oscillations along ridges might give the impression that the loss isn't improving,

potentially causing practitioners to abandon the training algorithm prematurely.

adam optimizer

Adam, short for Adaptive Moment Estimation, represents an advanced optimization algorithm

used in lieu of traditional stochastic gradient descent for updating neural network parameters

iteratively during training. It excels in handling large datasets and numerous parameters

efficiently, consuming less memory. Essentially, Adam combines elements of gradient descent

with momentum and the RMSprop algorithm. It dynamically adjusts the learning rate for each

parameter, ensuring effective optimization and convergence, especially in complex loss

landscapes.

To counter initialization biases, Adam incorporates a bias correction mechanism in its first

moment, promoting quicker convergence in early stages of training. Its overarching objective is

to stabilize and expedite the training process, guiding neural networks towards optimal solutions

by efficiently navigating both steep and flat regions of the loss function. By leveraging squared

gradients akin to RMSprop and incorporating momentum via a moving average, Adam integrates

dynamic learning rates and smoothing techniques to facilitate convergence towards global

minima.

2.3.4.7 Loss Function

Loss Function helps in the Building & improving the performance guiding optimization process,

we can apply loss function for tasks both regression and classification in order to [21] minimize

loss function of a model we build. we can also measures how well the models predictions watch

the actual target Values, and quantifies this difference between the actual measure & the

predicted one as an error to minimize this difference of error, parameters of our model such as

(weights and biases) are adjusted

while training M.L models we are required to assign objective functions or loss function which

are used to measure our models performance, and their values are Constantly optimized for

better performance. The form of loss function depends on multiple conditions including the

 25

nature of our problem we are trying to solve, the algorithm were are implementing as well as the

data the are using to train our algorithm with.

A loss Function L, is defined as f(xi) with it's Corresponding yi to a real number L ЄR, which

captures the similarities between f(xi) and yi Aggregating over all the points of the data set we

find.

 - the overall loss , L:

Figure 2.4 : loss function

Mean Squared Error (MSE) for regression

Mean Squared Error (MSE) in regression calculates [21] the average of the squared differences

between predicted values ў and observed values у . Squaring these differences ensures all biases

are positive and amplifies the impact of outliers, making MSE particularly effective in scenarios

where observation noise conforms to a normal distribution.

Figure 2.5 mean square error

Cross-Entropy Loss for classification.

Cross-entropy loss is a type of function, used for clarification Tests, where it calculates the

change between the true label and the one Predicted by our model; it works by paralyzing the

predicted Values that are vastly different from the actual the label.

 26

Figure 2.6 cross entropy

2.3.4.8 Multi Layered Perceptron(MLP)

In 1940 the idea of neural networks was conceived by computer scientists , in the early 80’s

those concepts led to what is called the Multi layer perceptron (MLP) algorithm ,and this

algorithm (MLP) was used to solve non-linear problems by using it’s hidden layers and

activation function. The Multi layer perceptron (MLP) algorithm by it’s nature is an easy to train

and implement algorithm ,it’s used to find correlation and patterns in a given dataset , by design

it’s [18] a common type of feed forward neural network algorithm that’s implemented in

different programs , both in classification which is why we chose it since we are using it to

classify weather to irrigate or not irrigate decision based on soil chemical data, , the MLP

algorithm has been used in varying degree with accurate results depending on the given data’s

attributes (quality and quantity).The MLP algorithm according to [9][15] is very powerful

technique within the neural network filed , especially for tasks involving very complex , non-

linear relationships ,that are based on real world problems ,by designing the architecture of the

algorithm ,preprocessing a given dataset and applying appropriate training and evaluation

techniques , this algorithm is being currently used in fields [19] like voice recognition, visual

data recognition, and machine translation and many more.

Figure 2.7 : MLP with single hidden layer

 27

Multi layer perceptron (MLP) has it’s own set of limitations being unable to compute complex

architecture and big data leading to performance decline in the model at the time , and in the

late 80’s the algorithm back propagation was introduced ,researchers were abeld to increase the

performance scale of the Multi layer perceptron (MLP) algorithm by using the back propagation

algorithm , which helps the Multi layer perceptron (MLP) algorithm by adjusting it’s weight and

helping it minimize error.the development of optimization technique also helped the Multi layer

perceptron (MLP) algorithm be more effective algorithm in the current time ,later in the

2010’s future advancements in the graphics (GPU) technology also were effective in allowing

the Multi layer perceptron (MLP) algorithm to create a more complex neural network

architecture.

Layer Connectivity

A layer that is connected fully also called dense layer ,is a neural network layer design where

each neuron is connected to each neuron in the previous layer and the next layer. this means that

every input is used in every output computation ensuring maximum interaction between layers.

This means that every input is used in every output computation ensuring maximum interaction

between layers.

Fully Connected layers are parameterized by their weights and biases, which are learned during

training using optimization algorithms like gradient descent ,hence they can capture complex

patterns and relationships in the data due to their dense connectivity, They can be used in

Various types of neural networks and for different tasks, including classification, regression, and

featuring extraction. The architecture of fully connected layers is straight forward and easy to

implement, making a fundamental building block in neural networks.

 Fully Connected lagers are fundamental components of MLP, enabling dense connectivity

between neurons across layers. this connectivity allows MLP's to learn and model complex

patterns in data. While they offer significant expressive power and versatility, they also come

with challenges like high parameters count and inefficiently for high dimensional data,

understanding the role and functioning of fully connected layers is crucial for effectively

designing and implementing neural network

models.

In a Multilayer Perceptron (MLP), all layers are fully interconnected. We denote the function of

a fully connected layer as y = fc(x, w, b) , where x is the input to the layer, w represents the

weight matrix, b is the bias vector, and y denotes the output.

 28

Each layer in an MLP consists of numerous neurons, with each neuron in one layer connected to

every neuron in the next layer via weighted connections. The first layer is known as the input

layer. The subsequent layers, termed hidden layers, do not directly interface with external inputs

or outputs. The final layer is referred to as the output layer.

Description Of The Basic Architecture

The Multi layer perceptron (MLP) algorithm is structured according to [17] in a way the signals

that are received from external environment are passed in one direction , starting from the input

layer to the output layer ,where the output of every neuron doesn’t affect the neuron itself this

structure is called feed forward , the hidden layer is what gets this neural network the name multi

layerd since the input layer is not counted in terms of it being not abeld to do anything but pass

the input data to the next layer.

The Multi layer perceptron (MLP) neural network are structurally in each neuron in the hidden

and output layer with an activation function (non-linear) ,and this makes them very effective

neural network, making MLP act as universal approximators ,and this activations are calculated

where each neurons weighed sum of its inputs which area added to a constant and this value is

calculated in a non-linear function also known as activation function. and this values are passed

the next neuron since its structurally feed forward mannered.

In order to solve non-linear separable problems we can use The Multi layer functional neurons ,

in the fig the hidden layer that is found in between the input and output layer has an activation

function for each neurons ,and so does the output layer in the multilayerd neurons. structurally

the neurons with in the three layers are connected fully to the next layers parallel to them , but

neurons with in the same from non-adjacent layers are not connected , this type of structure

implemented by this multi layerd neuron is called feed forward , in which the input layer

receives a signal from the outer environment , and the hidden and output layers process this

signal and finally the output layer outputs the proccessed signal , in this scenario the input layer

neurons function is to pass the input signals to hidden layer neurons the learning process of

neural networks is about learning from the training data(signal) to adjust the connection weights

among neurons and the thresholds of functional neuron.

2.3.4.9 Recurrent Neural Network (RNN)

To build our water management model on irrigated farmlands on algorithm that is useful due to

it’s ability to handle sequential data like soil chemical properties effectively is Recurrent Neural

Networks, Recurrent Neural Networks is a types of neural networks that is made up of a set of

 29

layers connected in a feed forward way that is according to [Pramita] similar to human neural

system , they are made up of multiple layers designed for a set of sequence of data’s ,The RNN

model has a one-way flow of information from the input units to the hidden units and a

directional loop that compares the error of this hidden layer to that of the previous hidden layer,

and adjusts the weights between the hidden layers. the hidden state that captures information

about previous inputs in the sequence, allowing them to model temporal dependencies.

Figure 2.8 : RNN Architecture

Recurrent Neural Networks (RNN), the hidden state update formula ht = σ(Wxhxt + Whhht-1 + bh)

encapsulates the recurrent nature of the network, where each hidden state ht depends on the

current input xt and the previous hidden state ht-1. In this formula, xt is the input vector at time

step t , while Wxh and Whh are weight matrices applied to the current input and the previous

hidden state, respectively. The bias vector bh is added to introduce an offset that can improve the

model's fit to the data. The activation function σ, such as the sigmoid or tanh function, is applied

to the combined input and hidden state, introducing non-linearity and enabling the network to

capture complex patterns. At each time step, the RNN updates its hidden state by first

performing linear transformations on the current input and previous state, summing these results

with the bias, and then applying the activation function. This process allows the RNN to

maintain a form of memory across time steps, which is essential for tasks involving sequential

data, such as time series prediction and natural language processing, where the order and context

of data points are important. Understanding and implementing this formula is crucial for

effectively using RNN.

Figure 8.9 : Hidden State Update Formula in RNN

 30

 However, RNN also face limitations such as difficulty in learning long-term dependencies due

to issues like vanishing gradients and exploding gradients ,due to its inability to memorize

during back propagation where gradient decent weight adjustment are not fully implemented ,

these shortcomings of regular RNN Algorithm are solved by LSTM and GRU algorithms.

Long Short-Term Memory (LSTM) Networks

LSTM Algorithms that is according [nigatu] designed by Hochreiter and Schmidhuber

specifically designed to solve sequential non-linear data’s like our soil chemical properties

gathered from a farmland, which is useful in managing water prediction, LSTM are used to

address the limitations of simple RNNs, particularly [nigatu] [Pramita] the vanishing gradient

problem. they solve this issue by replacing all units in the hidden layer with memory cells where

each memory cell according to [Pramita] has at least a single memory cell , this memory cell

includes input gates, forget gates, and output gates. The memory cells maintain the cell state,

which acts as a long-term memory, allowing the network to remember crucial information over

extended sequences. The input gate controls the extent to which new information flows into the

cell state, the forget gate regulates the removal of information no longer needed, and the output

gate determines the amount of cell state information that influences the output at each time step.

This gated mechanism enables LSTM to effectively handle the complexities of sequential data,

such as soil chemical properties over time, and make accurate binary classification decisions on

whether to irrigate or not based on the evolving patterns in the data. The ability of LSTM to

preserve and utilize information over long sequences makes them a robust choice for tasks

involving time-series prediction and sequential classification.

Figure 2.10 : Single Cell in LSTM

 31

Gated Recurrent Unit (GRU) Networks

Gated Recurrent Unit is a simplified version of LSTM Algorithm that aim to achieve similar

performance with fewer parameters.

The gated recurrent unit (GRU) is an advanced form of recurrent neural network (RNN) that

builds upon the principles of long short-term memory (LSTM). While it shares similarities with

the LSTM unit, particularly in combining the input and forget gates into a single update gate, the

GRU is generally simpler to compute and implement. This simplicity arises from its more

streamlined internal structure, which reduces the number of computations required for updating

the internal state, thereby facilitating training. Like the LSTM, the GRU effectively mitigates the

issue of vanishing gradients. The GRU features two gates: a reset gate, which determines the

extent to which the current state should integrate with historical data, and an update gate, which

manages how much information from the previous state is retained in the current state. The

mathematical operations governing the GRU cell's gating mechanism are detailed as follows: [Q.

Kang]. In these equations , Wz , Wr , and W denote the weight matrices for the corresponding

input vectors, while bz , br , and b represent biases. Uz, Ur , and U are the weight matrices from

the preceding time step. The candidate hidden state is denoted by ht , the update gate by zt , the

reset gate byrt, and the logistic sigmoid function by σ.

Figure 2.11 : cell structure of a gated recurrent unit

2.3.5 Model Evaluation

Metrics for Evaluation

Evaluation metrics are [9] essential components of machine learning tasks, tailored specifically

to tasks such as classification and regression. While some metrics like precision-recall are

versatile across different tasks, supervised learning, which includes classification and regression,

dominates the field of machine learning applications. Employing diverse classification metrics

for performance evaluation enhances the predictive accuracy of models before deployment on

 32

unseen data. Relying solely on accuracy without a comprehensive evaluation using diverse

metrics can result in poor predictions when the model is deployed in real-world scenarios.

Accuracy

Accuracy measures the frequency with which a classifier predicts correctly. It is defined as

the ratio of correct predictions to the total number of predictions.

Confusion

The confusion matrix is a pivotal tool for evaluating the performance of machine learning

classification models, particularly in scenarios where there are multiple classes. It provides a

table of predicted versus actual values and is crucial for assessing metrics such as Recall,

Precision, Accuracy, and AUC-ROC curves.

Precision

Precision indicates the proportion of correctly predicted positive cases out of all predicted

positive cases. It is particularly valuable in situations where false positives are more

concerning than false negatives, such as in music or video recommendation systems and e-

commerce platforms.

Precision for a label is defined as the number of true positives divided by the number of

predicted positives.

Recall

Recall measures the proportion of actual positive cases correctly identified by the model. It is

essential in scenarios where false negatives are more critical than false positives, such as in

medical diagnostics, where detecting all positive cases is crucial.

By rephrasing each section, we aim to present the information in a unique and distinct manner

while preserving the core concepts and information.

F1-Score

F1-Score gives a combined idea about Precision and Recall metrics. It is maximum when

Precision is equal to Recall.

 33

2.4 Review of Related Work

2.4.1 Local Related Work

Smart and Intelligent Irrigation System (SI2S)

The thesis titled "Smart and Intelligent Irrigation System: A Machine Learning and IOT” is are

search done by the authors Samuel zeyede and asrat mulatu , inorder to create an AI model by

integrating ML Algorithms with IOT sensor devices on irrigation fields found in debre-zeit

Agricultural research center which is found in oromia regional state in east shoa zone , where the

researchers used both primary as well as secondary data Garlic vegetation , where these data’s

were collected using IOT sensors by planting them on the fields , and these collected data’s were

collected using micro-controllers like raspberry pi and uploading them on cloud think speak, the

also put their model on the cloud , the authors used two machine learning algorithms , linear

regression algorithms for prediction and decision trees algorithms for categorization of data’s ,

and they were able to save water usage by the garlic farm by percentage of 6.45% during initial

period and about 6.75% during development phases.

2.4.2 Global Related Work

An Intelligent Irrigation System Based On Internet of Things To Minimize Water Loss.

This thesis was authored by Samar Amassmir and Co where they proposed which of the three

machine learning Algorithm fit much more in an irrigation system where water management is

crucial these Algorithms are K Nearest Neighbour , Support Vector Machine and Artificial

Neural Network, the authors were able to make a comparative outcome of the three by collecting

set of soil chemical data by using IOT systems called Temperature and humidity sensors where

these data are sent to micro controllers like Arduino and raspberry pi where the model are stored

, and based on the data which all three models which are based on the three machine learning

Algorithm they were able to train models with accuracyof91%(KNN Algorithm), 87%(SVM

Algorithm) and 96.8% (ANN) , from this accuracy results the authors were able to conclude

KNN algorithm was the best result of the for more accurate model building based on the data

they input.

34

Chapter -3

3. Methodology

3.1 Introduction

In this section we discuss about the Deep Learning based model we prepare to predict irrigation

water needs based on a set of soil chemical properties That are collected from irrigated farms in

Ethiopia, thereby improving water management in controlled irrigation systems. This

methodology section we describe the set of techniques and methods to gather ,select and

preprocess the set of data’s needed , and also describe how the model we will build will be

structurally designed using set of algorithms and In combination with optimization and

activation function , we picked to train and make future predictions based on those prepared

data’s.

3.2 Dataset Collection

For the irrigation prediction model we will be building in this experiment we got set of irrigation

soil chemical data set from the region of Oromia , East Shewa Zone , Adama Woreda , which is

found in the Central region of Ethiopia ,which we were provided by a governmental institute

namely Ethiopian Agricultural Transformation Agency (EAIA) , the data was collected by the

institute from an irrigation farmlands surrounding awash melka area ,we requested those data’s

both in person and online communication where ethiopian agricultural transformation agency

(EAIA) requested some legal documents to be provided for them to provide what we requested

and we complied with their demand and the data was provided to us via email , the set of data

we received from the Ethiopian Agricultural Transformation Agency (EAIA) institute include a

set of chemical properties ,crop type , soil type, personnel and location detail.

3.3 Feature Selection

The set of data’s we received includes over 90 features which include numerical , textual /

categorical values and to make these data’s usable by the model we will build we need to analyze

and prepare (preprocess) it for the machine using a set of python libraries to handle the

difference set of issues with our data and multiple preprocessing techniques, In the dataset we

still have irrelevant and redundant features that we need to remove like long, lat and zone which

are redundant as well as irrelevant to the development and performance of the model like

personnel who performed the sampling and soil color and soil type as well as type of crops , and

when we go once step further we also need to pick features that are contributing to the accuracy

and relevancy of the model we are building and we can distinguish those features by applying

35

which chemical features are relevant to the water threshold in a soil by the chemical property

analysis., using those techniques above we selected 17 chemical feature for our model to handle.

3.4 Dataset Preprocessing

Data preprocessing is essential part of model building which involves preparing and

transforming raw data before it can be used for model building and analysis.

The sets of data’s collected by The Ethiopian Agricultural Transformation Agency (EAIA)

institute contains noisy , irrelevant and missing data’s ,and other expert based analysis , therefore

we need to preprocess the data we have gathered , and in the next steps we’ll apply the

preprocessing tasks.

3.4.1 Dataset Cleaning

The data collected from a different locations in farmland by the institute have missing values ,

and we found in order to solve these missing data’s we use an imputation method called mean

imputation to replace those missing data values we did this due to the small scale of our data we

will use to train our model.

Our machine learning algorithms can’t handle missing data directly, therefore data preprocessing

allows the algorithms by handling missing values by either removing instances with missing

values by imputing missing values with reasonable estimates or with more advanced imputation

methods like mean imputation , which we implemented for the missing values in our dataset.

Figure 3.1 :data sample with missing values

36

Figure 3.2 : number of missing values after

3.4.2 Dataset Reduction

In this step we remove unnecessary feature that does not help our model features like sample_id ,

Lat , Lon, Woreda and others they are not complementary to our model therefore we remove

them. , and in the end we removed over 72 features which we deemed unnecessary having no

effect on our models performance .

Figure 3.3 :feature reduction

Thresholding / Weighted Sum

After finishing the above preprocessing steps to the three files we , we give each of our chemical

properties in our dataset their own irrigate threshold using thresholding technique , since each

chemical property has its own property and value range in relation to moisture level in the soil

37

therefore we will be forced to assign each its own water threshold classification with 1 being to

the decision irrigate and 0 being to the decision not to irrigate.

Figure 3.4: sample threshold

Figure 3.5 : sample chemical properties irrigate threshold

To finally have a single irrigate decision that we can use as the y dependent value for our model

we have to apply weighted sum method where each chemical property is weighted based on its

importance to measuring water moisture this weight is made by irrigation experts who value and

rank these properties based on analysis of these properties in relation to their level of

effectiveness in telling how moist a soil is and we have explained these in detail in chapter 2

section , for it to need be irrigated or not , and set a conservative threshold (70% of the sum of

weights) so that it needs most conditions to be in dire situation to apply water so it can conserve

water as much as possible. and finally we remove those chemical property thresholds since we

have the weighted sum of each.

Figure 3.6 : weighted final result

38

3.4.3 Dataset Normalization

Normalization is a data preprocessing technique implimented by neural networks, it’s used to

scale features of the input to the range of in between 0 and 1, they help by changing the inputs

values of different ranges added to the neural network to similar range. this technique is applied

either when the distribution of the data cannot be found or the distribution of the data input is not

normal.

In our research, we employ the scikit-learn MinMaxScaler function to normalize our dataset.

This function adjusts the data to a specific range, aiding in the normalization of each feature. By

default, the MinMaxScaler function scales each feature independently to ensure values fall

within a designated minimum and maximum range, typically 0 to 1.

3.5 Data Splitting

Models are shaped to make to our specific problem we are trying to solve weather it is to make

prediction or categorization using a set of preprocessed data we did earlier, where this data is

used both to shape as well as to validate the accuracy of our model by splitting them into two

sections namely training set (a set that is visible to the model) and testing set that is invisible to

the model during training phase.

The data set we use to train our model contains 18 features (ph, p , k , ca , mg , mn , s, cu , b , zn

, na , fe , al , si , co , mo , ec , final_irrigate) , we divided the data set in ratio of 80/20 80 % to

train and 20% to test , and catagorize the (ph, p , k , ca , mg , mn , s, cu , b , zn , na , fe , al , si ,

co , mo , ec) datas as independent and (final_irrigate) data as dependent.

3.6 Hyper Parameter Tuning

The performance of the model we are trying to build a perfect is based on the configuration of

our neural networks parameters, which we constantly have to tune to get a better accuracy. hyper

parameter play a major role in training a neural network model , where each parameter differ in

terms of impacting the models accuracy , therefore making our selection of those parameters

both in training as well as testing phase of the model very crucial, those parameters that greatly

impact this include the optimizer batch size ,learning rate and network structure , and hyper

parameter like the number and width of a hidden layers greatly influence the learning capacity as

well as complexity of our model , making tuning of these parameters very crucial for the overall

performance of the model we are creating. for our model we will be implementing set of hyper-

parameters . We used selected our machine learning model, optimizer, activation, learning rate,

batch size, epochs, dropout and neurons as a parameter configuration.

39

3.7 Model Design and Development

Our thesis implements MLP, LSTM and GRU algorithms, to predict when to and not to apply

water to an irrigated farmland soil, we selected these algorithm due to their ability to solve non-

linearity issues, and can be utilized in time series problems to achieve maximum accuracy we

also implementing optimizers (SGDM and Adam) and activation functions (sigmoid , ReLU and

relu) to make our model more accurate based on the best combination of the two.

3.8 Model Training

We will build a classification model which we will be using to predict future events in an

irrigation filed water management where the model will be built using a set of chemical

properties that are independent variables and a decision to be predicted, a combination of these

set of data’s and an a Deep Learning algorithms will give us a predictive model we require, the

accuracy and success of our model is dependent on set of hyper parameters we define and

manage during this training phase.

3.9 Evaluation Metrics

The performance of our model is assessed using cross entropy loss is a type of loss function,

used for clarification Tests, where it measures the difference between the true label and the one

Predicted by our model; it works by analyzing the predicted Values that are vastly different from

the actual the label.

3.10 Proposed Model and Architecture

We will build a Deep Learning model (MLP, LSTM, GRU) with a set of soil chemical property

data set and preprocess each data, where the selected soil chemical features of our data set are

each given their own threshold using

Threshold-Based Labeling by defining thresholds for soil chemical properties that indicate when

to apply water , and finally combine these with each soil property features are combined and

each dependent feature is combined to single value using weighted sum a method by which each

chemical properties threshold is given a weight of its own to decide the combined result(final

irrigate) feature , the final preprocessed set with the chemical properties (ph, p , k , ca , mg , mn

, s, cu , b , zn , na , fe , al , si , co , mo , ec) and an irrigation decision result column

(final_irrigate) is then split into train test and the training data is fed to The Algorithms (MLP ,

LSTM ,GRU), and the new trained model is then tested on the testing data to measure accuracy

40

of the model, thus our model be helping predict future water management decisions based on set

of chemical properties of a soil.

Figure 3.7 : experimental architecture of Our model

41

3.11 Software and Tools Used

We use multiple software and hardware to build our model, both local and remote tools like

Google colab , we list each tool below:

Hardware

manufacturer apple

model Mac Book Pro version 12.7.5

processor Dual-Core Intel Core i5

processor speed 2.7 GHz

memory 8 GB 1867 MHz DDR3

HDD size Intel Iris Graphics 6100 1536 MB

Table 3.1 : hardware specifications

software tools and packages/libraries

mac os

we use mac operating system on our mac laptop since it’s the only operating system that runs on

this machine ,mac os is [52] an operating system that was created by apple company to run on

their machines.

Python

Python is [53] an easy to learn, general-purpose, high-level, powerful programming language11.

Which is widely used in the recent times, also using python different magazines and website are

published. Many corporations have used and been using this tool for different function. Python

offers efficient high-level data structures, is portable, open-source, and adopts a straightforward

yet powerful approach to object-oriented programming. Its elegant syntax,dynamic typing, and

interpreted nature collectively position it as a preferred language for scripting and rapid

application development across various domains and platforms. we use python 3.10 v . Python

can be integrated and supports a different technology that is why we use python, the following

packages are installed on python3.

Tensor Flow

Tensor Flow was developed by the Google Brain team for internal Google use. It is [54] open-

sourced framework for the implementation and deployment of large-scale machine learning

models. Tensor Flow was introduced under the Apache License 2.0 on November 9, 2015.

Renowned for its prowess in numerical computing, Tensor Flow plays a crucial role in the realm

of deep learning. It offers APIs across a wide range of languages and platforms essential for deep

42

learning projects, including Python, Android, Java, Windows, and Linux. TensorFlow stands as

one of the most prominent libraries for handling Deep Neural Networks, owing to its seamless

application development and deployment capabilities.

Keras

Keras, is [55] an open-source neural-network library implemented in Python, operates

seamlessly on TensorFlow, Microsoft Cognitive Toolkit, or Theano. It serves as a high-level

abstraction built atop TensorFlow or Theano, offering a Python-based API similar to scikit-learn

for constructing neural networks. Developers leverage Keras to rapidly prototype neural

networks, abstracting away complexities of tensor algebra, numerical techniques, and

optimization methods. With its modular design, Keras fosters expressiveness, flexibility, and is

well-suited for pioneering research endeavors. Being entirely Python-based, Keras facilitates

ease of debugging and exploration. Unlike TensorFlow, Keras may not accommodate low-level

model adjustments, necessitating TensorFlow for such tasks. Once familiar with its syntax,

developers can swiftly construct models using Keras.

Pickle

The Python pickle module is [56] utilized for serializing and de-serializing Python object

structures. It enables any Python object to be serialized for storage on disk. Pickling involves

serializing the object into a character stream before writing it to file. This process converts

Python objects like lists or dictionaries into a format that encapsulates all essential information

for reconstructing the object in another Python script.

Numpy

NumPy serves as [57] the fundamental library for scientific computing in Python, encompassing

a comprehensive array of tools and methodologies essential for solving mathematical models in

Science and Engineering on computers. It is designed as a versatile package for array processing,

featuring a high-performance multidimensional array object and a robust set of utilities tailored

for manipulating these arrays. NumPy evolves from its predecessor, the Numeric array object,

with the objective of establishing a robust foundation for an effective scientific computing

environment.

panda

Pandas is [58] a versatile Python package renowned for its robust capabilities in handling labeled

and time series data. Beyond offering essential statistical methods and enabling visualization

43

through plotting, pandas excels in its capacity to seamlessly read from and write to various file

formats, including Excel and CSV. Key functions like `read_csv()` empower efficient file

manipulation, facilitating the storage and retrieval of data and labels from pandas objects as

Series or Data Frame instances.

Matplotlib

Matplotlib stands [59] as a robust plotting library for Python, serving to generate static, animated,

and interactive visualizations. Its core objective is to equip users with versatile tools and

functionalities for visually representing data, thereby enhancing analysis and comprehension.

While Matplotlib boasts an extensive codebase that may seem intimidating to newcomers,

grasping its fundamental concepts and key principles can simplify its usage considerably.

Matplotlib is popular due to its ease of use, extensive documentation, and wide range of plotting

capabilities. It offers flexibility in customization, supports various plot types, and integrates well

with other Python libraries like NumPy and Pandas.

Matplotlib is a suitable choice for various data visualization tasks, including exploratory data

analysis, scientific plotting, and creating publication-quality plots. It excels in scenarios where

users require fine-grained control over plot customization and need to create complex or

specialized visualizations.

44

Chapter 4

4. Experiment And Result

4.1 Introduction

In this chapter our model is trained on Set of hyper parameters, We will use Adam optimizer

with multiple Activation functions, we will be testing SGDM with sigmoid , ReLU and, softmax

, and so with momentum will use each of the three activation functions, sigmoid , ReLU and

tanh, the results and discussions are present in our study and the experiments results are

evaluated using Accuracy, precision, Recall, F1 Score and Confusion Matrix.

In this study, we use three machine learning algorithms namely Multilayer Perceptron (MLP),

Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) , to help us in water

management decisions based on soil chemical properties. The MLP, which is a type of feed

forward neural network, excels in capturing complex, non-linear relationships within our data,

providing robust classification capabilities. LSTM and GRU, both which are specialized

recurrent neural networks (RNNs), offer distinct advantages in handling temporal dependencies

and sequential patterns which are inherent in soil data, ensuring more accurate and reliable

irrigation predictions.

The tests we performed was done on a dataset that included historical soil chemical data

collected over a seven-year period in different parts of Adama. EIAT is the source of the data.

Before providing the dataset to the prediction model , we carry out feature engineering and data

preprocessing operations. The following hyper parameters were used in the model's

implementation and assessment: the dropout layer, activation function, optimizer, loss function,

and evaluation metrics. We examine how well state-of-the-art deep learning systems estimate

water management using preprocessed soil chemical data. Ultimately, based on the original

problem statement and research questions that we establish during proposal, the model's overall

result as well as the experimentation result are assessed and analyzed.

4.2 Experimental Setup

Dataset and Preprocessing

The dataset used in our study comprises comprehensive soil chemical properties collected from

various farmlands by irrigation agricultural experts. It includes 17 distinct features related to soil

composition and nutrient levels, which are crucial in determining irrigation decisions. To prepare

the data for modeling, preprocessing steps involved normalization to standardize feature scales

and handling missing values through median imputation techniques. And threasholding weighted

sum techniques were further added to the data preprocessing step, Furthermore, categorical

45

variables were encoded using appropriate methods to ensure compatibility with machine learning

algorithms. The dataset was then split into training, validation, and test sets to facilitate robust

model evaluation and performance validation.

Experimental Environment:

The experiments were conducted using a computational setup comprising a mach laptop

equipped with a intel processor and over 128 memory capacity to handle large-scale data

operations efficiently. The software environment leveraged Python as the primary programming

language, supported by essential libraries such as TensorFlow and Keras for implementing and

training deep learning models. These libraries provided a versatile framework for building and

fine-tuning Multilayer Perceptron (MLP), Long Short-Term Memory (LSTM), and Gated

Recurrent Unit (GRU) models. The experiments were executed within Jupyter Notebooks,

facilitating interactive development and seamless integration of data preprocessing, model

training, and result analysis.

Experimental Design

our experimental design contains a systematic manipulation of various configurations and

hyperparameters across the MLP, LSTM, and GRU architectures. For MLP models, different

network depths, neuron counts per layer, and activation functions like ReLU, Sigmoid and tanh

were evaluated to optimize classification accuracy. LSTM and GRU models, known for their

ability to capture temporal dependencies, were fine-tuned with varying numbers of units, and

learning rates to enhance convergence speed. Each model configuration underwent rigorous

evaluations using metrics such as accuracy, precision, recall, and F1 score on the validation set.

Comparative analysis among the three algorithms also provided us insights into each models

respective strengths and suitability.

4.3 Multi-Layer Perceptron (MLP)

In this section we test and train MLP neural network, using Adam and SGDM optimizers , with

three activation functions each, by applying different epochs to train them on our local machine

using Jupyter Notebook, using sklearn and tensor flow libraries. to train the model.

4.3.1 MLP Baseline Configuration

The baseline Multilayer Perceptron (MLP) model serves as the foundational framework for

predicting irrigation decisions based on soil chemical properties in our study. Configured with a

46

straightforward architecture, the MLP consists of multiple fully connected layers, each

employing rectified linear unit (ReLU) activation functions to introduce non-linearity and

improve model performance. The input layer constitutes about 17 soil chemical features, while

subsequent hidden layers are optimized with varying numbers of neurons to capture complex

relationships within the dataset. The output layer employs a sigmoid activation function,

facilitating binary classification where a value close to 1 indicates a decision to irrigate and 0

suggests no irrigation. This baseline configuration where we set up our parameters to have single

hidden layer , 20 epochs, 6 batch sizes and 16 neuron per hidden layers , the combination of the

listed hyper parameter values listed in the table below are applied to our MLP model.

Hyper parameter Value

Number of Layers 1

 Units per Layers 16

Activation Function ReLU

 Learning Rate 0.001

Epochs 20

Batch Size 6

 Optimizer Adam

Table 4.1: MLP Baseline Configuration

The base line results are listed in the table below and we will use this evaluation to compare with

the other results we will get in next analysis.

Metric Training Value Validation Value

Accuracy 0.969 0.954

Loss 0.080 0.139

Table 4.2: MLP Baseline Results

4.3.2 MLP Hyper parameter Tuning

In This Section We Will Try Rearranging The Hyper parameters Of our MLP model we are

trying to perfect by trying to get the best accuracy results , in this section we will try to

manipulate different values specifically for the number of neurons , number of hidden layers ,

epoch values and batch sizes , by initiating these values from the base line we mentioned above .

Tuning number of neurons hyper parameter

In This section we try to manipulate the value of number of neurons per layer where we input

different variations including [16, 32 , 64 ,128] , and find which hyper parameter value is the one

47

that results in better performance of the model , and we were abeld to determine the layers size ,

based on the our analysis , the best choice would be 16 neurons, as it has the lowest validation

loss, indicating good generalization to unseen data. The slight increase in validation loss with 32

neurons suggests that it is also a reasonable choice if you prefer a bit more complexity, but 16

neurons is more optimal in this case.

No of neurons training loss validation loss

16 0.080 0.139

32 0.063 0.140

64 0.046 0.150

128 0.037 0.171

Table 4.3 : Performance result of tuning neuron size for MLP

Tuning number of hidden layer hyper parameter

In this section we try to manipulate the value of the number of of hidden layers in the hidden

layer of our MLP model we are building ,by adding different variation like [1 , 2 , 3 , 4] , and

find which hyperparameter value is the one that results in better performance of the model , and

we were abeld to determine that , based on our analysis , 1 hidden layer is the best choice

because it has the lowest validation loss, indicating the best generalization to unseen data. and

adding more hidden layers will lead to over fitting , as evidenced by the increasing validation

loss in the table below.

No of hidden layer training loss validation loss

1 0.070 0.155

2 0.052 0.197

3 0.036 0.193

4 0.036 0.280

Table 4.4 : Performance result of tuning number of hidden layers for MLP

Tuning epoch hyper parameter

In this section we try and perform an analysis of manipulating epoch parameter y applying

multiple variations of epoch values [4 , 10 , 15 ,20,25,30] and find which epoch values is the

values with the least validation loss as a viable choosing criteria

The optimal number of epochs based on this analysis appears to be 10 epochs, as it provides the

lowest validation loss (0.140) while keeping the training loss reasonably low (0.097). This

suggests a good balance between fitting the training data and generalizing to the validation data

without over fitting , but difference between the validation losses for 10 and 20 epochs is very

48

small, and the training loss is lower at 20 epochs. This suggests that the model is continuing to

learn and improve with more epochs. Given this small difference in validation loss and the

improvement in training loss, indeed it make sense to use 20 epochs as the viable option here.

No of epoch training loss validation loss

4 0.119 0.148

10 0.097 0.140

15 0.080 0.154

20 0.073 0.141

25 0.069 0.150

30 0.063 0.147

35 0.056 0.143

40 0.050 0.184

Table 4.5 : Performance result of tuning epoch for MLP

Tuning batch size hyper parameter

In this section we try and perform an analysis of manipulating batch size parameter y applying

multiple variations of batch size values [6 , 16 , 32 , 64 , 128] and find which batch size values is

the values with the least validation loss as a viable choosing criteria , and based on our analysis

we were abeld to determine batch size 32 has the lowest validation loss (0.144), which indicates

the best performance on unseen data. Although its training loss is slightly higher than batch size

6, the lower validation loss is more important for generalization to new data. batch size 32 is

optimal because it offers the best balance between training and validation performance,

indicating good generalization capability.

No of batch size training loss validation loss

6 0.074 0.147

16 0.096 0.152

32 0.105 0.144

64 0.127 0.159

128 0.145 0.170

Table 4.6: Performance result of tuning batch size for MLP

Tuning activation function hyper parameter

In this section we try and perform an analysis of manipulating activation function parameter by

applying multiple variations of activation functions [relu , tanh , sigmoid] and find which

activation function is the one on our MLP model with the least validation loss as a viable

49

choosing criteria , and based on our analysis , ReLU has the lowest validation loss (0.135) and

also the lowest training loss (0.073). This indicates that the model performs best with the ReLU

activation function in terms of both training and validation performance. Using the ReLU

activation function is optimal because it offers the best balance between training and validation

performance.

Activation Function training loss validation loss

relu 0.073 0.135

tanh 0.083 0.139

sigmoid 0.102 0.142

Table 4.7: Performance result of tuning activation function for MLP

Tuning learning rate hyper parameter

In this section we try and perform an analysis of manipulating learning rate parameter by

applying multiple variations of learning rate values [0.1 , 0.01 , 0.001 , 0.0001] and find which

batch size values is the values with the least validation loss as a viable choosing criteria , and

based on our analysis we were abeld to determine the learning rate of 0.001 shows the lowest

validation loss (0.149), indicating better performance on unseen data compared to other learning

rates tested. While a higher learning rate like 0.01 initially improves training loss significantly, it

results in higher validation loss, suggesting over fitting. On the other hand, a very low learning

rate like 0.0001 results in poorer training and validation performance overall. Therefore, 0.001 is

optimal as it strikes a balance between effectively minimizing the loss during training and

maintaining good generalization to validation data.

No of learning rate training loss validation loss

0.1 0.102 0.484

0.01 0.038 0.302

0.001 0.073 0.149

0.0001 0.137 0.156

Table 4.8: Performance result of tuning learning rate for MLP

4.3.3 MLP Analysis

In this section we will build the optimal model based on the configured values of our hyper

parameters like number of neurons per layer , number of layers in a hidden layer , epoch values ,

learning rate , batch size and activation functions for our MLP model which are listed in the table

below.

50

model neurons layers epochs learning

rate

batch

size

activation

function

MLP 16 1 20 0.001 32 relu

Table 4.9: optimal hyper parameters for MLP

Accuracy

using the MLP algorithm with our hyper-parameters adjustment of 16 neurons , 20 epochs , with

80% of the data to train and 20% to test , learning rate of 0.001 , single hidden layer , and batch

size 32 , and relu activation function we adjusted we got accuracy of (95.4%).

Confusion matrix

From our experiment we can see from the confusion matrix that out of the total data we gave it

to predict 1.75% of the 0(not water) conditions are exactly predicted as 0(not water) , where

3.06% of 0(not water) conditions are incorrectly predicted as 1(water) condition ,also 1.53% of

1(water) condition are incorrectly predicted as 0(not water) condition where 93.65% of the

1(water) condition were correctly predicted as 1(water) condition.

Figure 4.9 confusion matrix for MLP

Train and test accuracy and loss

the figure we have below shows the accuracy of the training and validation set of our model with

a hyper parameter of 20 epochs , where our MLP based model with adam optimizer in relu

activation function have training accuracy of 96.6% and validation accuracy of 95.4%.

51

.

Figure 4.10 Training and validation accuracy of attention using MLP

The figure below shows loss of our mode of adam optimizer with relu activation, describing loss

of training 0.100 and validation loss 0.147.

Figure 4.11 Training and validation loss of attention using MLP

.

4.4 Long Short-Term Memory (LSTM)

4.4.1 LSTM Baseline Configuration

The Long Short-Term Memory (LSTM) model is tailored to leverage the sequential nature of

soil chemical data for precise irrigation decision-making. Comprising LSTM layers equipped

with memory cells capable of retaining information over extended periods, this model excels in

capturing temporal dependencies among the 17 soil chemical features. Each LSTM unit

incorporates gates to regulate the flow of information, including input, forget, and output gates,

thereby effectively managing long-term dependencies and sequential data like ours while

mitigating vanishing gradient issues. The model architecture includes multiple LSTM layers

followed by a dense output layer with a sigmoid activation function for binary classification.

52

Tuned with optimal dropout rates and learning rates, This baseline configuration where we set up

our parameters to have single hidden layer , 20 epochs, 6 batch sizes and 50 neuron per hidden

layers , the combination of the listed hyperparameter values listed in the table below are applied

to our LSTM model.

Hyperparameter Value

Number of Layers 1

 Units per Layers 50

Activation Function tanh

 Learning Rate 0.001

Epochs 20

Batch Size 6

 Optimizer Adam

Table 4.10: LSTM Baseline Configuration

The base line results are listed in the table below and we will use this evaluation to compare with

the other results we will get in next analysis.

Metric Training Value Validation Value

Accuracy 0.967 0.956

Loss 0.096 0.137

Table 4.11: LSTM Baseline Results

4.4.2 LSTM Hyperparameter Tuning

In This Section We Will Try Rearranging The Hyperparameteres Of our LSTM model we are

trying to perfect by trying to get the best accuracy results , in this section we will try to

manipulate different values specifically for the number of neurons , number of hidden layers ,

epoch values and batch sizes , by initiating these values from the base line we mentioned above .

Tuning number of neurons hyper parameter

In This section we try to manipulate the value of number of neurons per layer where we input

different variations including [40,50,60,70,80,90,100] , and find which hyperparameter value is

the one that results in better performance of the model , and we were abeld to determine the

layers size , based on our analysis , neuron with size of 80 shows the lowest validation loss

(0.125), indicating the best performance on unseen data. Although the training loss is slightly

53

higher compared to some other configurations (e.g., 60 neurons), the validation loss is the most

crucial metric for generalization performance.

Therefore, using 80 neurons is optimal as it offers the best balance between minimizing the

training loss and maintaining a low validation loss, indicating good generalization capability.

No of neurons training loss validation loss

40 0.099 0.134

50 0.095 0.149

60 0.094 0.175

70 0.095 0.145

80 0.097 0.125

90 0.102 0.131

100 0.099 0.141

Table 4.12: Performance result of tuning neuron size for LSTM

Tuning number of hidden layer hyper parameter

In this section we try to manipulate the value of the number of of hidden layers in the hidden

layer of our LSTM model we are building ,by adding different variation like [1 , 2 , 3 , 4] , and

find which hyperparameter value is the one that results in better performance of the model , and

we were abeld to determine that , based on our analysis , The configuration with 2 hidden layers

shows the lowest validation loss (0.131), indicating the best performance on unseen data.

Although the training loss is slightly higher compared to the configuration with 1 hidden layer

(0.099 vs. 0.096), the validation loss is the most critical metric for generalization performance.

Therefore, using 2 hidden layers is optimal as it offers the best balance between minimizing the

training loss and maintaining a low validation loss, indicating good generalization capability.

No of hidden layer training loss validation loss

1 0.096 0.132

2 0.099 0.131

3 0.100 0.138

4 0.101 0.140

Table 4.13: Performance result of tuning number of hidden layers for LSTM

Tuning epoch hyper parameter

In this section we try and perform an analysis of manipulating epoch parameter y applying

multiple variations of epoch values [4 , 10 , 15 ,20,25,30] and find which epoch values is the

values with the least validation loss as a viable choosing criteria

54

The optimal number of epochs based on this analysis The configuration with 30 epochs shows

the lowest validation loss (0.127), indicating the best performance on unseen data. Although the

training loss is slightly higher compared to configurations with more epochs, the validation loss

is the most critical metric for generalization performance.

Therefore, using 30 epochs is optimal as it offers the best balance between minimizing the

training loss and maintaining a low validation loss, indicating good generalization capability.

No of epoch training loss validation loss

4 0.120 0.144

10 0.108 0.140

15 0.099 0.151

20 0.098 0.129

25 0.093 0.133

30 0.091 0.127

35 0.086 0.138

40 0.085 0.135

Table 4.14: Performance result of tuning epoch for LSTM

Tuning batch size hyper parameter

In this section we try and perform an analysis of manipulating batch size parameter y applying

multiple variations of batch size values [6 , 16 , 32 , 64 , 128] and find which batch size values is

the values with the least validation loss as a viable choosing criteria , and based on our analysis

we were abeld to determine The configuration with a batch size of 6 shows the lowest validation

loss (0.137), indicating the best performance on unseen data. Although the training loss is not the

lowest, the validation loss is the most critical metric for generalization performance.

Therefore, using a batch size of 6 is optimal as it offers the best balance between minimizing the

training loss and maintaining a low validation loss, indicating good generalization capability.

No of batch size training loss validation loss

6 0.097 0.137

16 0.104 0.140

32 0.110 0.142

64 0.108 0.139

128 0.110 0.150

Table 4.15: Performance result of tuning batch size for LSTM

55

Tuning activation function hyper parameter

In this section we try and perform an analysis of manipulating activation function parameter by

applying multiple variations of activation functions [relu , tanh , sigmoid] and find which

activation function is the one on our LSTM model with the least validation loss as a viable

choosing criteria , and based on our analysis , The configuration with the ReLU activation

function shows the lowest validation loss (0.136), which indicates the best performance on

unseen data. Although the training loss is slightly higher than tanh, the validation loss is the most

critical metric for generalization performance.

Therefore, using the ReLU activation function is optimal as it offers the best balance between

minimizing the training loss and maintaining a low validation loss, indicating good

generalization capability.

Activation Function training loss validation loss

relu 0.129 0.136

tanh 0.095 0.140

sigmoid 0.121 0.140

Table 4.16: Performance result of tuning activation function for LSTM

Tuning learning rate hyper parameter

In this section we try and perform an analysis of manipulating learning rate parameter by

applying multiple variations of learning rate values [0.1 , 0.01 , 0.001 , 0.0001] and find which

batch size values is the values with the least validation loss as a viable choosing criteria , and

based on our analysis we were abeld to determine Learning Rate 0.0001 is the optimal value for

this hyperparameter, This learning rate provides the lowest validation loss (0.137), indicating

the best generalization performance among the other values. Even though the training loss is not

the lowest, the primary goal is to minimize validation loss to ensure good performance on unseen

data.

Therefore, based on the results provided, the optimal learning rate for our LSTM model is

0.0001.

No of learning rate training loss validation loss

0.1 0.208 0.241

0.01 0.069 0.153

0.001 0.099 0.145

0.0001 0.117 0.137

Table 4.17: Performance result of tuning learning rate for LSTM

56

4.4.3 LSTM Analysis

In this section we will build the optimal model based on the configured values of our hyper

parameters like number of neurons per layer , number of layers in a hidden layer , epoch values ,

learning rate , batch size and activation functions for our LSTM model which are listed in the

table below.

model neurons layers epochs learning

rate

batch

size

activation

function

LSTM 80 2 30 0.0001 6 relu

Table 4.18: optimal hyper parameters for LSTM

Accuracy

using the LSTM algorithm with our hyper-parameters adjustment of 80 neurons , 30 epochs ,

with 80% of the data to train and 20% to test , learning rate of 0.0001 , two hidden layer , and

batch size 6 , and relu activation function we adjusted we got accuracy of (95.8%).

Confusion matrix

From our experiment we can see from the confusion matrix that out of the total data we gave it

to predict 1.75% of the 0(not water) conditions are exactly predicted as 0(not water) , where

3.06% of 0(not water) conditions are incorrectly predicted as 1(water) conditon ,also 1.09% of

1(water) condition are incorrectly predicted as 0(not water) condition where 94.09% of the

1(water) condition were correctly predicted as 1(water) condition.

Figure 12.4: confusion matrix for LSTM

57

Train and test accuracy and loss

the figure we have below shows the accuracy of the training and validation set of our model with

a hyper parameter of 30 epochs , where our LSTM based model with adam optimizer in relu

activation function have training accuracy of 96.1% and validation accuracy of 95.8%.

.

Figure 4.13: Training and validation accuracy of attention using LSTM

The figure below shows loss of our mode of adam optimizer with relu activation,Describing loss

of training 0.095 and validation loss of 0.116.

Figure 4.14 Training and validation loss of attention using LSTM

4.5 Gated Recurrent Unit (GRU)

4.5.1 GRU Baseline Configuration

The Gated Recurrent Unit (GRU) model represents a streamlined yet powerful alternative to

LSTM for analyzing temporal sequences in soil chemical datasets. Featuring simplified gating

mechanisms, the GRU architecture is designed to facilitate efficient training and inference while

maintaining robust performance. Each GRU unit integrates reset and update gates to selectively

update and reset its state, effectively capturing short-term dependencies without compromising

computational efficiency. The model configuration includes multiple GRU layers stacked

sequentially, culminating in a dense output layer with a sigmoid activation function for binary

58

classification. Fine-tuned with appropriate dropout rates and learning rates, the GRU model aims

to achieve comparable predictive accuracy to LSTM while offering advantages in training speed

and simplicity, essential for scalable agricultural applications.

This baseline configuration where we set up our parameters to have single hidden layer , 20

epochs, 6 batch sizes and 50 neuron per hidden layers , the combination of the listed

hyperparameter values listed in the table below are applied to our LSTM model.

Hyperparameter Value

Number of Layers 1

 Units per Layers 50

Activation Function tanh

 Learning Rate 0.001

Epochs 20

Batch Size 32

 Optimizer Adam

Table 4.19: GRU Baseline Configuration

The base line results are listed in the table below and we will use this evaluation to compare with

the other results we will get in next analysis.

Metric Training Value Validation Value

Accuracy 0.965 0.956

Loss 0.109 0.141

Table 4.20: GRU Baseline Results

4.5.2 GRU Hyperparameter Tuning

In This Section We Will Try Rearranging The Hyperparameteres Of our GRU model we are

trying to perfect by trying to get the best accuracy results , in this section we will try to

manipulate different values specifically for the number of neurons , number of hidden layers ,

epoch values and batch sizes , by initiating these values from the base line we mentioned above .

Tuning number of neurons hyper parameter

In This section we try to manipulate the value of number of neurons per layer where we input

different variations including [40,50,60,70,80,90,100] , and find which hyperparameter value is

the one that results in better performance of the model , and we were abeld to determine the

layers size , based on our analysis , 90 Neuronsis the optimal value for our hyperparameter

59

variable number of neurons, This configuration provides the lowest validation loss (0.106),

indicating the best generalization performance among the given options. The low training loss

also suggests that the model fits well to the training data without overfitting.

Therefore, based on the results provided, the optimal number of neurons for the LSTM model is

90.

No of neurons training loss validation loss

40 0.109 0.144

50 0.105 0.151

60 0.107 0.143

70 0.109 0.138

80 0.119 0.140

90 0.106 0.106

100 0.105 0.140

Table 4.21: Performance result of tuning neuron size for GRU

Tuning number of hidden layer hyper parameter

In this section we try to manipulate the value of the number of of hidden layers in the hidden

layer of our GRU model we are building ,by adding different variation like [1 , 2 , 3 , 4] , and

find which hyperparameter value is the one that results in better performance of the model , and

we were abeld to determine that , based on our analysis , The configuration with 1 hidden layer

provides the lowest validation loss (0.143) among all configurations while maintaining a

reasonable training loss (0.109), indicating better generalization performance, but given the

minimal difference in validation loss and the slightly lower training loss,4 hidden layers can be

used as the optimal value due to the lower training loss, which contribute to better performance

during training and slightly better generalization.

So, based on your reasoning and the updated analysis, the optimal number of hidden layers for

the GRU model is4 hidden layers.

No of hidden layer training loss validation loss

1 0.109 0.143

2 0.103 0.149

3 0.110 0.145

4 0.106 0.144

Table 4.22: Performance result of tuning number of hidden layers for GRU

60

Tuning epoch hyper parameter

In this section we try and perform an analysis of manipulating epoch parameter y applying

multiple variations of epoch values [4 , 10 , 15 ,20,25,30,40s] and find which epoch values is the

values with the least validation loss as a viable choosing criteria

Based on the performance results of tuning the number of epochs for the GRU model, the

optimal number of epochs can be determined by analyzing both the training loss and validation

loss. The results indicate that 20 epochs result in the lowest validation loss (0.136), although the

training loss is higher (0.176) compared to other configurations. This suggests a model that

generalizes well to new data despite having a higher training loss. On the other hand, 4 epochs

and 10 epochs yield slightly higher validation losses (0.137 and 0.138, respectively) with lower

training losses (0.128 and 0.114, respectively), indicating better training efficiency but a slight

trade-off in validation performance. Considering both training and validation performance, 20

epochs is the most optimal configuration for the GRU model, as it provides the best

generalization capability with the lowest validation loss, despite the increased training loss. This

balance ensures that the model performs well on unseen data, which is crucial for practical

applications in irrigation decision-making.

No of epoch training loss validation loss

4 0.128 0.137

10 0.114 0.138

15 0.111 0.145

20 0.176 0.136

25 0.110 0.151

30 0.118 0.138

35 0.113 0.140

40 0.101 0.144

Table 4.23: Performance result of tuning epoch for GRU

Tuning batch size hyper parameter

In this section we try and perform an analysis of manipulating batch size parameter y applying

multiple variations of batch size values [6 , 16 , 32 , 64 , 128] and find which batch size values is

the values with the least validation loss as a viable choosing criteria , and based on our analysis

we were abeld to determine The configuration with a batch size of 32 provides the lowest

validation loss (0.139), even though the training loss is higher (0.164) compared to other

configurations. This suggests that the model generalizes well to new data with a batch size of 32,

achieving the best validation performance.

61

While batch sizes of 6 and 16 show slightly lower training losses (0.094 and 0.100, respectively)

and competitive validation losses (0.147 and 0.146, respectively), they do not outperform the

batch size of 32 in terms of validation loss. Batch sizes of 64 and 128 have similar validation

losses (0.142 each) but do not offer any significant improvement over batch size 32.

No of batch size training loss validation loss

6 0.094 0.147

16 0.100 0.146

32 0.164 0.139

64 0.111 0.142

128 0.117 0.142

Table 4.24: Performance result of tuning batch size for GRU

Tuning activation function hyper parameter

In this section we try and perform an analysis of manipulating activation function parameter by

applying multiple variations of activation functions [relu , tanh , sigmoid] and find which

activation function is the one on our GRU model with the least validation loss as a viable

choosing criteria , and based on our analysis , The ReLU activation function shows the lowest

validation loss (0.126) and the lowest training loss (0.089) among the three activation functions

tested. This suggests that the GRU model with the ReLU activation function not only fits the

training data well but also generalizes better to the validation data compared to the tanh and

sigmoid activation functions.

Therefore, ReLU is the optimal activation function for the GRU model based on the given

performance results, providing the best balance between training and validation loss.

Activation Function training loss validation loss

relu 0.089 0.126

tanh 0.110 0.149

sigmoid 0.127 0.140

Table 4.25: Performance result of tuning activation function for GRU

Tuning learning rate hyper parameter

In this section we try and perform an analysis of manipulating learning rate parameter by

applying multiple variations of learning rate values [0.1 , 0.01 , 0.001 , 0.0001] and find which

batch size values is the values with the least validation loss as a viable choosing criteria , and

based on our analysis we were abeld to determine The learning rate of 0.0001 shows the lowest

62

validation loss (0.137), indicating that it performs the best on the validation set. Although the

training loss for this learning rate is higher than that for 0.01 (0.120 compared to 0.079), the

validation performance is more important as it indicates better generalization to unseen data.

Therefore, 0.0001 is the optimal learning rate for the GRU model based on the given

performance results, providing the best balance between training and validation loss and

suggesting the best generalization performance.

No of learning rate training loss validation loss

0.1 0.140 0.148

0.01 0.079 0.151

0.001 0.108 0.156

0.0001 0.120 0.137

Table 4.26: Performance result of tuning learning rate for GRU

4.5.3 GRU Analysis

In this section we will build the optimal model based on the configured values of our hyper

parameters like number of neurons per layer , number of layers in a hidden layer , epoch values ,

learning rate , batch size and activation functions for our GRU model which are listed in the

table below.

model neurons layers epochs learning

rate

batch

size

activation

function

GRU 90 4 20 0.0001 32 relu

Table 4.27: optimal hyper parameters for GRU

Accuracy

using the GRU algorithm with our hyper-parameters adjustment of 90 neurons , 20 epochs , with

80% of the data to train and 20% to test , learning rate of 0.0001 , four hidden layers , and batch

size 32 , and relu activation function we adjusted we got accuracy of (94.3%).

Confusion matrix

From our experiment we can see from the confusion matrix that out of the total data we gave it

to predict 1.97% of the 0(not water) conditions are exactly predicted as 0(not water) , where

2.84% of 0(not water) conditions are incorrectly predicted as 1(water) condition ,also 2.84% of

1(water) condition are incorrectly predicted as 0(not water) condition where 92.34% of the

1(water) condition were correctly predicted as 1(water) condition.

63

Figure 4.15 : confusion matrix for GRU

Train and test accuracy and loss

the figure we have below shows the accuracy of the training and validation set of our model with

a hyper parameter of 20 epochs , where our GRU based model with adam optimizer in relu

activation function have training accuracy of 96.4% and validation accuracy of 94.3%.

.

Figure 4.16 :Training and validation accuracy of attention using GRU

the figure below shows loss of our mode of adam optimizer with relu activation ,describing loss

of training 0.106 and validation loss of 0.141.

64

Figure 4.17 : Training and validation loss of attention using GRU

4.6 Comparative Analysis

In the sequence of experiments we conducted on three different neural network architectures

namely the Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and Gated

Recurrent Unit (GRU). With our MLP model with the optimal hyperparameters values we were

abeld to achieve a training accuracy of 96.6% and a validation accuracy of 95.4%, with a training

loss of 0.100 and a validation loss of 0.147. our LSTM model exhibited slightly lower training

accuracy at 96.1% but outperformed in validation accuracy with 95.8%, demonstrating better

generalization with a lower validation loss of 0.116 and a training loss of 0.095. Meanwhile, the

GRU model achieved a training accuracy of 96.4% and matched the MLP in validation accuracy

at 95.4%, with a training loss of 0.106 and a validation loss of 0.141. These results suggest that

while all three models performed well, our LSTM model showed the best balance between

training and validation performance, showing its superior capability in handling the time-

dependent nature of the soil chemical data for our irrigation prediction requirement.

 Model Type Training

Accuracy

Validation

Accuracy

Training Loss Validation

Loss

MLP 96.6% 95.4% 0.100 0.147

LSTM 96.1% 95.8% 0.095 0.116

GRU 96.4% 95.4% 0.106 0.141

Table 4.28: comparative analysis for MLP , LSTM and GRU

65

Figure 4.18 : Accuracy Comparison of MLP, LSTM, and GRU

Figure 4.19 : Loss Comparison of MLP, LSTM, and GRU

66

Chapter 5

Conclusion

In my research to create a water management predictive model for irrigated farmlands I was

abeld to collect and analyze set of soil chemical data which I gained access from governmental

institutes , I tried to understand the relationship between these properties and how the water

content in the soil are related and I was abled to specifically understand how each properties in

the sample soil react to the total volume of water content and the numerical value range where

each properties react when the water volume in the soil is normal range and I was abeld to use

this to categorically describe this properties for the water management using preprocessing

methods and feed this set of datas to a machine learning algorithms including Multi layer

perceptron(MLP) , Long Short-Term Memory (LSTM), and Gated Recurrent Unit

(GRU)algorithms and I was abeld to predict based on these chemical properties of soil data

inputs to get weather a soil needs to be irrigated or not with a maximum accuracy of 95.4 %

(MLP) , 95.8% (LSTM) And 94.3% (GRU) respectively for each models , and in conclusion also

there are previously done models with better prediction accuracy the research done did not use

machine learning algorithm and have had more data in scale to train their model. And I was

abeld to achieve my objective :

I was abeld to Analyze though articles that Deep learning based models are more effective in

managing water resource based on the experience of other developing countries history of using

AI based & IOT based Irrigation where they were abeld to conserve their resources without

hampering their crop productivity., and we were abeld to find in our analysis and development of

our model that predictive models based on machine learning algorithms were more effective

compared to other human expert based conservation methods.

the models I build with different Hyperparameter combination based on the MLP, LSTM and

GRU Algorithms I was abeld to achieve an accuracy 95.4 % (MLP) , 95.8% (LSTM) And 94.3%

(GRU), compared to some of the papers we reviewed in terms of the local paper which lacks

accuracy values but the level of water conserved we were not abeld to Compare and compare but

in the other papers we reviewed which they were able to achieve an accuracy level of 91% (kNN)

and 87% (SVM) and according to my analysis and comparison of these systems mine was the

better in terms of accuracy level.

I was also abeld to predict future predictions using chemical data inputs with very effective

predictive success.

In the future research I hope to do a better model building using much scaled up dataset to feed

my model and use more complex algorithms with more complex parameter tunning adjustments

67

that will fit the scale of my data I will procure by using IOT and cloud based technology, and test

my trained model on field in real time by using field sensors and microcontrollers in combintion.

68

Reference

1. N. K. Dawit, "Factors Affecting Use of Small-Scale Irrigation on Household Level in the Afar

Regional State Amibera Woreda: In Case of Melka Werer Kebele," June 2023.

2. A. Balasubramanian, "Chemical Properties of Soils," Mar. 28, 2017.

3. G. Adugna, "A Review on Impact of Compost on Soil Properties, Water Use and Crop

Productivity," Apr. 25, 2016.

4. T. A. Howell, "Irrigation Scheduling Research and Its Impact on Water Use," 1996.

5. W. T. Adugna, J. M. Hassen, F. R. Borena, N. A. Sori, and K. N. Tufa, "Response of Deficit

Irrigation Levels and Methods on Yield and Water Productivity of Maize at Werer Agricultural

Research Center, Afar, Ethiopia," 2018.

6. R. Ullah, A. W. Abbas, M. Ullah, R. U. Khan, I. U. Khan, N. Aslam, and S. S. Aljameel,

"EEWMP: An IoT-Based Energy-Efficient Water Management Platform for Smart Irrigation,"

Apr. 2021.

7. T. Yu and H. Zhu, "Hyper-Parameter Optimization: A Review of Algorithms and

Applications."

8. K. Chandra, A. Xie, J. Ragan-Kelley, and E. Meijer, "Gradient Descent: The Ultimate

Optimizer," 2022.

9. P. F. Orrù, A. Zoccheddu, L. Sassu, C. Mattia, R. Cozza, and S. Arena, "Machine Learning

Approach Using MLP and SVM Algorithms for the Fault Prediction of a Centrifugal Pump in

the Oil and Gas Industry," Jun. 11, 2020.

10. N. Tessema, D. Yadeta, A. Kebede, and G. T. Ayele, "Soil and Irrigation Water Salinity, and

Its Consequences for Agriculture in Ethiopia: A Systematic Review," 2023.

11. E. Svedberg, "Impact on Yield and Water Productivity of Wheat by Access to Irrigation

Scheduling Technologies in Koga Irrigation Scheme, Ethiopia," 2019.

12. S. Z. Tefera and A. M. Beyene, "IoT and Machine Learning Based Smart and Intelligent

Irrigation System."

13. M. E. Karar, M. F. Al-Rasheed, A. F. Al-Rasheed, and O. Reyad, "IoT and Neural Network-

Based Water Pumping Control System For Smart Irrigation," May 8, 2020.

14. V. Ramachandran, R. Ramalakshmi, B. P. Kavin, I. Hussain, A. H. Almaliki, A. A. Almaliki,

A. Y. Elnaggar, and E. E. Hussein, "Exploiting IoT and Its Enabled Technologies for Irrigation

Needs in Agriculture," 2022.

15. S. Moghanian, F. B. Saravi, G. Javidi, and E. O. Sheybani, "GOAMLP: Network Intrusion

Detection With Multilayer Perceptron and Grasshopper Optimization Algorithm," Nov. 26,

2020.

69

16. A. Odeh, A. Alarbi, I. Keshta, and E. Abdelfattah, "Efficient Prediction of Phishing Websites

Using Multilayer Perceptron (MLP)," 2005.

17. R. Syah, S. Wulandari, A. Arbansyah, and A. Rezaeipanah, "Design of Ensemble Classifier

Model Based on MLP Neural Network For Breast Cancer Diagnosis," 2021.

18. Y. Li, Z. Zhang, Z. Teng, and X. Liu, "PredAmyl-MLP: Prediction of Amyloid Proteins

Using Multilayer Perceptron," Nov. 21, 2020.

19. A. K. Gupta, "Deep Learning: A Comprehensive Overview," , 2018.

20. V. Singh, "Normalization vs Standardization," Feb. 29, 2024.

21. T. M. E. Janssen, "Hyperparameter Tuning for Artificial Neural Networks Applied to Inverse

Mapping Parameter Updating," 2022.

22. M. E. Karar, M. F. Al-Rasheed, A. F. Al-Rasheed, and O. Reyad, "IoT and Neural Network-

Based Water Pumping Control System For Smart Irrigation," May 1, 2020.

23. S. Eriksson, "Water Quality in the Koga Irrigation Project, Ethiopia: A Snapshot of General

Quality Parameters," Uppsala University, Department of Earth Sciences, 2013.

24. W. Seifu and E. Elias, "Soil Quality Attributes and Their Role in Sustainable Agriculture: A

Review," Jan. 28, 2019.

25. T. Mulualem and B. Yebo, "Review on Integrated Soil Fertility Management for Better Crop

Production in Ethiopia," Jan. 2, 2015.

26. M. Yami, "Irrigation Projects in Ethiopia: What Can Be Done to Enhance Effectiveness

Under ‘Challenging Contexts’?," International Journal of Sustainable Development & World

Ecology, 2016.

27. Z. A. Dejen, B. Schultz, and L. Hayde, "Water Delivery Performance at Metahara Large-

Scale Irrigation Scheme, Ethiopia," Oct. 2014.

28. N. K. Nawandar and V. Satpute, "IoT Based Intelligent Irrigation Support System for Smart

Farming Applications," Regular Issue, Vol. 8, No. 2, pp. 73-85, 2019.

29. R. Lal, "Soil Carbon Sequestration Impacts on Global Climate Change and Food Security,"

2004.

30. M. E. Sumner and W. P. Miller, "Cation Exchange Capacity and Exchange Coefficients,"

Methods of Soil Analysis: Part 3—Chemical Methods, 1996.

31. J. D. Rhoades, A. Kandiah, and A. M. Mashali, "The Use of Saline Waters for Crop

Production," FAO Irrigation and Drainage Paper 48, FAO, 1992.

32. E. V. Maas and S. R. Grattan, "Crop Yields as Affected by Salinity," Agricultural Drainage,

vol. 55, pp. 55-108, 1999.

70

33. L. V. Kochian, M. A. Pineros, and O. A. Hoekenga, "The Physiology, Genetics, and

Molecular Biology of Plant Aluminum Resistance and Toxicity," Plant and Soil, vol. 274, no. 1-

2, pp. 175-195, 2005.

34. K. Kouno, T. Fujiwara, and Y. Yamamoto, "Essential Role of Cobalt in the Nitrogen

Fixation Metabolism of Bradyrhizobium Japonicum," Soil Science and Plant Nutrition, vol. 48,

no. 6, pp. 763-767, 2002.

35. K. Mengel and E. A. Kirkby, Principles of Plant Nutrition, 5th ed., Springer, 2001.

36. H. Marschner, Marschner's Mineral Nutrition of Higher Plants, 3rd ed., Academic Press,

2011.

37. U. C. Gupta and S. C. Gupta, Trace Elements in Soils and Plants, 4th ed., CRC Press, 2014.

38. A. E. Johnston, "Understanding Phosphorus and Its Use in Agriculture," European Fertilizer

Manufacturers Association (EFMA), 2003.

39. W. L. Lindsay and A. P. Schwab, "The Chemistry of Iron in Soils and Its Availability to

Plants," Journal of Plant Nutrition, vol. 5, no. 4-7, pp. 821-840, 1982.

40. B. J. Alloway, Zinc in Soils and Crop Nutrition, International Zinc Association, 2008.

41. U. C. Gupta, "Boron and Its Role in Crop Production," CRC Critical Reviews in Plant

Sciences, vol. 12, no. 2, pp. 59-93, 1993.

42. B. J. Alloway, Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their

Bioavailability, 3rd ed., Springer, 2013.

43. N. C. Brady and R. R. Weil, The Nature and Properties of Soils, 14th ed., Pearson, 2008.

44. U. C. Gupta, Molybdenum in Agriculture, Cambridge University Press, 1997.

45. J. F. Ma and N. Yamaji, "Silicon Uptake and Accumulation in Higher Plants," Trends in

Plant Science, vol. 11, no. 8, pp. 392-397, 2006.

46. N. K. Fageria, Nitrogen Management in Crop Production, CRC Press, 2014.

47. J. L. Havlin, S. L. Tisdale, W. L. Nelson, and J. D. Beaton, Soil Fertility and Fertilizers: An

Introduction to Nutrient Management, 8th ed., Pearson, 2013.

48. W. T. Pettigrew, "Potassium Influences on Yield and Quality Production for Maize, Wheat,

Soybean, and Cotton," Physiologia Plantarum, vol. 133, no. 4, pp. 670-681, 2008. [Online].

Available: https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2008.01073.x.

49. E. J. Chen, Z. C. Li, H. B. Luo, and Y. Liu, "Attention-Based LSTM Predictive Model for

the Attitude and Position of Shield Machine in Tunneling," Underground Space, vol. 13, pp.

335-350, 2023. doi: 10.1016/j.undsp.2023.05.006.

50. N. A. Abebe, "Water Consumption Analysis and Prediction Using Deep Learning

Approach," Feb. 2024.

71

51. P. S. Muhuri, P. Chatterjee, X. Yuan, K. Roy, and A. Esterlin, "Using a Long Short-Term

Memory Recurrent Neural Network (LSTM-RNN) to Classify Network Attacks," Information,

vol. 11, no. 243, 2020. doi: 10.3390/info11050243.

52. Apple Inc., "macOS - Apple," 2023. [Online]. Available: https://www.apple.com/macos/.

[Accessed: 12-Jul-2024].

53. Python Software Foundation, "Welcome to Python.org," 2023. [Online]. Available:

https://www.python.org/. [Accessed: 12-Jul-2024].

54. M. Abadi et al., "TensorFlow: A System for Large-Scale Machine Learning," in Proceedings

of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI '16),

Savannah, GA, USA, 2016, pp. 265-283.

55. F. Chollet, "Keras: The Python Deep Learning library," 2023. [Online]. Available:

https://keras.io/. [Accessed: 12-Jul-2024].

56. Python Software Foundation, "pickle — Python object serialization," in Python

Documentation, 2023. [Online]. Available: https://docs.python.org/3/library/pickle.html.

[Accessed: 12-Jul-2024].

57. C. R. Harris, K. J. Millman, S. J. van der Walt et al., "Array programming with NumPy,"

Nature, vol. 585, pp. 357-362, 2020.

58. W. McKinney, "Data Structures for Statistical Computing in Python," in Proceedings of the

9th Python in Science Conference (SciPy 2010), Austin, TX, USA, 2010, pp. 51-56.

59. J. D. Hunter, "Matplotlib: A 2D Graphics Environment," Computing in Science &

Engineering, vol. 9, no. 3, pp. 90-95, May-June 2007.

https://www.apple.com/macos/
https://www.python.org/
https://keras.io/
https://docs.python.org/3/library/pickle.html

72

Appendices

Appendix A: Row dataset collected from EIAT

Region Zone Woreda sample_id
lab_sample_n

o
ph p hp

Oromia
East

Shewa
Adama

40703.A07

6
NULL NULL 183 NULL

Oromia
East

Shewa
Adama

40703.A02

4
NULL 8.01 12 NULL

Oromia
East

Shewa
Adama

40703.A08

2
NULL NULL 152 NULL

Oromia
East

Shewa
Adama

40703.A02

9
NULL 8.08 39 NULL

Oromia
East

Shewa
Adama

40703.A04

3
NULL 7.46 3 NULL

Oromia
East

Shewa
Adama

40703.A09

5
NULL NULL 61 NULL

Oromia
East

Shewa
Adama

40703.A08

8
NULL NULL 50 NULL

Oromia
East

Shewa
Adama

40703.A08

3
NULL NULL 7 NULL

Oromia
East

Shewa
Adama

40703.A05

6
NULL NULL 38 NULL

Oromia
East

Shewa
Adama

40703.A10

3
NULL NULL 20 NULL

Oromia
East

Shewa
Adama

40703.A11

4
NULL 7.11 12 NULL

Oromia
East

Shewa
Adama

40703.A11

6
NULL 7.37 30 NULL

Oromia
East

Shewa
Adama

40703.A14

6
NULL 8.17 8 NULL

Oromia
East

Shewa
Adama

40703.A09

7
NULL NULL 52 NULL

Oromia
East

Shewa
Adama

40703.A05

9
NULL NULL 3 NULL

Oromia
East

Shewa
Adama

40703.A03

8
NULL 8.09 36 NULL

Oromia
East

Shewa
Adama

40703.A10

2
NULL NULL 31 NULL

Oromia
East

Shewa
Adama

40703.A04

5
NULL 7.48 18 NULL

Oromia
East

Shewa
Adama

40703.A04

8
NULL 8.12 19 NULL

Oromia
East

Shewa
Adama

40703.A01

2
NULL 7.86 14 NULL

Oromia
East

Shewa
Adama

40703.A06

0
NULL NULL 15 NULL

Oromia
East

Shewa
Adama

40703.A14

4
NULL 7.97 13 NULL

Oromia
East

Shewa
Adama

40703.A04

1
NULL 8.11 10 NULL

Oromia
East

Shewa
Adama

40703.A14

3
NULL 6.84 18 NULL

Oromia
East

Shewa
Adama

40703.A13

8
NULL 7.69 6 NULL

Oromia East Adama 40703.A16 NULL 7.8 31 NULL

73

Shewa 1

Oromia
East

Shewa
Adama

40703.A12

7
NULL 7.56 25 NULL

Oromia
East

Shewa
Adama

40703.A00

9
NULL 8.04 29 NULL

Oromia
East

Shewa
Adama

40703.A13

7
NULL 7.08 13 NULL

Oromia
East

Shewa
Adama

40703.A13

6
NULL 7.88 12 NULL

Oromia
East

Shewa
Adama

40703.A13

4
NULL 7.64 7 NULL

Appendix B: Processed dataset

Appendix C: Training History

/Users/abel/opt/anaconda3/lib/python3.9/site-packages/keras/src/layers/rnn/rnn.py:204: UserWar

ning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential mod

els, prefer using an `Input(shape)` object as the first layer in the model instead.

 super().__init__(**kwargs)

Epoch 1/2058/58━━━━━━━━━━━━━━━━━━━━19s 94ms/step - accuracy: 0.8317 - loss:

0.6756 - val_accuracy: 0.9519 - val_loss: 0.5627

Epoch 2/2058/58━━━━━━━━━━━━━━━━━━━━4s 66ms/step - accuracy: 0.9532 - loss: 0.

4528 - val_accuracy: 0.9519 - val_loss: 0.2151

Epoch 3/2058/58━━━━━━━━━━━━━━━━━━━━4s 71ms/step - accuracy: 0.9622 - loss: 0.

1763 - val_accuracy: 0.9519 - val_loss: 0.1849

Epoch 4/2058/58━━━━━━━━━━━━━━━━━━━━5s 83ms/step - accuracy: 0.9480 - loss: 0.

1965 - val_accuracy: 0.9519 - val_loss: 0.1674

Epoch 5/2058/58━━━━━━━━━━━━━━━━━━━━4s 68ms/step - accuracy: 0.9543 - loss: 0.

1616 - val_accuracy: 0.9519 - val_loss: 0.1555

Epoch 6/2058/58━━━━━━━━━━━━━━━━━━━━5s 82ms/step - accuracy: 0.9630 - loss: 0.

1256 - val_accuracy: 0.9519 - val_loss: 0.1474

Epoch 7/2058/58━━━━━━━━━━━━━━━━━━━━4s 66ms/step - accuracy: 0.9582 - loss: 0.

1376 - val_accuracy: 0.9519 - val_loss: 0.1411

Epoch 8/2058/58━━━━━━━━━━━━━━━━━━━━4s 74ms/step - accuracy: 0.9595 - loss: 0.

1212 - val_accuracy: 0.9519 - val_loss: 0.1392

Epoch 9/2058/58━━━━━━━━━━━━━━━━━━━━4s 62ms/step - accuracy: 0.9488 - loss: 0.

1426 - val_accuracy: 0.9519 - val_loss: 0.1394

Epoch 10/2058/58━━━━━━━━━━━━━━━━━━━━5s 80ms/step - accuracy: 0.9534 - loss:

0.1262 - val_accuracy: 0.9562 - val_loss: 0.1390

Epoch 11/2058/58━━━━━━━━━━━━━━━━━━━━5s 79ms/step - accuracy: 0.9554 - loss:

0.1203 - val_accuracy: 0.9540 - val_loss: 0.1352

74

Epoch 12/2058/58━━━━━━━━━━━━━━━━━━━━7s 118ms/step - accuracy: 0.9539 - loss:

 0.1274 - val_accuracy: 0.9497 - val_loss: 0.1365

Epoch 13/2058/58━━━━━━━━━━━━━━━━━━━━7s 121ms/step - accuracy: 0.9618 - loss:

 0.1182 - val_accuracy: 0.9497 - val_loss: 0.1357

Epoch 14/2058/58━━━━━━━━━━━━━━━━━━━━5s 90ms/step - accuracy: 0.9648 - loss:

0.1020 - val_accuracy: 0.9519 - val_loss: 0.1368

Epoch 15/2058/58━━━━━━━━━━━━━━━━━━━━6s 95ms/step - accuracy: 0.9522 - loss:

0.1540 - val_accuracy: 0.9584 - val_loss: 0.1353

Epoch 16/2058/58━━━━━━━━━━━━━━━━━━━━6s 100ms/step - accuracy: 0.9558 - loss:

 0.1169 - val_accuracy: 0.9540 - val_loss: 0.1358

Epoch 17/2058/58━━━━━━━━━━━━━━━━━━━━6s 104ms/step - accuracy: 0.9647 - loss:

 0.0947 - val_accuracy: 0.9519 - val_loss: 0.1386

Epoch 18/2058/58━━━━━━━━━━━━━━━━━━━━9s 88ms/step - accuracy: 0.9646 - loss:

0.1147 - val_accuracy: 0.9519 - val_loss: 0.1378

Epoch 19/2058/58━━━━━━━━━━━━━━━━━━━━7s 122ms/step - accuracy: 0.9593 - loss:

 0.1108 - val_accuracy: 0.9519 - val_loss: 0.1382

Epoch 20/2058/58━━━━━━━━━━━━━━━━━━━━7s 112ms/step - accuracy: 0.9652 - loss:

 0.0986 - val_accuracy: 0.9431 - val_loss: 0.1419

WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.

save_model(model)`. This file format is considered legacy. We recommend using instead the nat

ive Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_

model.keras')`.

Model saved as 'irrigation_prediction_gru_model.h5'15/15━━━━━━━━━━━━━━━━━━━
━0s 20ms/step - accuracy: 0.9416 - loss: 0.1470

GRU Model Accuracy: 0.943115/15━━━━━━━━━━━━━━━━━━━━5s 203ms/step

Accuracy: 0.9431

Precision: 0.9701

Recall: 0.9701

F1 Score: 0.9701

Confusion Matrix:

[[9 13]

 [13 422]]

